
Preprint c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Optimising DASH over AQM-enabled Gateways

Using Intra-chunk Parallel Retrieval (Chunklets)

Jonathan Kua, Grenville Armitage

Internet For Things (I4T) Research Laboratory

Swinburne University of Technology

Melbourne, Australia

{jtkua, garmitage}@swin.edu.au

Abstract—Multimedia streaming is a significant source of
Internet traffic, with Netflix and YouTube accounting for more
than 50% of North American fixed network peak download
traffic in 2016. Dynamic Adaptive Streaming over HTTP (DASH)
is a recent standard for live and on-demand video streaming
services, where clients adapt the video quality on-the-fly to match
the network capacity by requesting multi-rate video chunk-by-
chunk. Emerging Active Queue Management (AQM) schemes
such as PIE and FQ-CoDel are being progressively deployed
either at the ISP-end and/or home gateway to counter bufferbloat
and will impact consumer DASH streams. We propose using
intra-chunk parallel connections (chunklets) to retrieve DASH
content when bottlenecks implement AQMs. We experimentally
evaluate and characterise the impact of using chunklets over
traditional FIFO, symmetric/asymmetric PIE and FQ-CoDel
AQM bottlenecks. We show FQ-CoDel’s flow isolation and fair
capacity sharing ability enables DASH chunklets to attain the
best throughput multiplication effect, hence translating to better
user experience in the presence of competing elastic flows.

Index Terms—DASH, chunklets, TCP, AQM, PIE, FQ-CoDel

I. INTRODUCTION

With the proliferation of various Internet-enabled devices in

the home, diverse application flows have to compete for the

last-mile ISP bottleneck link or home gateway that connects

home users to the Internet. Many of these applications rely on

the Transmission Control Protocol (TCP) to ensure reliable

transport of data and effective use of available bandwidth.

However, TCP is known to fill bottleneck buffers until packet

losses occur, causing cyclical queue filling and draining and

inflation of end-to-end Round Trip Time (RTT) delays. Over-

sized bottleneck buffers lead to the well-known bufferbloat [1]

phenomenon.

In recent years, various new Active Queue Management

(AQM) schemes have been developed by the Internet Engi-

neering Task Force (IETF) to combine the burst-tolerating

attributes of large buffers with low long-term queuing de-

lays. These schemes include Proportional Integral controller

Enhanced (PIE) [2], Controlled Delay (CoDel) [3] and

FlowQueue-CoDel (FQ-CoDel) [4]. A variant of PIE has been

integrated into DOCSIS 3.1 [5] and FQ-CoDel has been highly

recommended for embedded Linux gateways.

Video streams represent a significant portion of inbound

traffic to the home environment, with Netflix and YouTube

accounting for more than 50% of North American fixed

network peak download traffic in 2016 [6]. Dynamic Adaptive

Streaming over HTTP (DASH) is a recent standard for live and

on-demand video streaming services, where clients adapt the

video quality on-the-fly to match the network capacity by re-

questing multi-rate video on a chunk-by-chunk basis by using

a single TCP connection [7]. Since DASH traffic pattern differs

from long-lived traffic flows, it has complex implications when

interacting with bottlenecks that implements AQMs schemes.

For example, FQ-CoDel isolates individual traffic flows into

sub-queues then serves each sub-queue with a Deficit Round

Robin (DRR) scheduler. The result is relatively even capacity

sharing, which may actually be detrimental to a DASH flow

(often a single, persistent TCP connection) that is competing

with multiple other concurrent TCP flows.

We consider the new case where a DASH client might use

multiple concurrent TCP connections to retrieve different parts

of a video chunk (which we refer to as chunklets) in parallel

over a network path dominated by an AQM bottleneck. We

show that DASH chunklets can leverage the flow isolation and

capacity sharing of an FQ-CoDel bottleneck to achieve a larger

share of the bottleneck bandwidth when competing with long-

lived, elastic bulk transfer flows. This translates to improved

Quality of Experience (QoE) for the end-user. A chunklet

strategy sits underneath, essentially invisible to, the chunk-

level adaptive bitrate strategies available to (and implemented

by) existing DASH clients.

In this paper, we make the following key contributions:

• Experimentally evaluate and characterise the impact of

using intra-chunk parallel retrieval on a DASH client’s

performance in AQM environments.

• Show that FQ-CoDel can be leveraged by DASH chun-

klets to achieve a higher bandwidth share in the presence

of cross traffic.

• Experimentally evaluate scenarios where ISP-end of the

last-mile has upgraded to using AQMs while the home

user continue to use traditional FIFO, and vice versa.

The rest of this paper is structured as follows. Section II pro-

vides background on DASH, AQMs and a summary of related

work. Section III describes our use case model, experimental

testbed setup, which includes our video client/server, dataset

and chunkleting proxy. In Section IV, we present an analysis

and discussion of our results. We outline potential future work

in Section V and offer concluding remarks in Section VI.

Authors’ copy. To appear in the 26th International Conference on Computer Communications and Networks (ICCCN 2017)
July 31 - August 3, 2017. See notice on the top of this page.

1

II. BACKGROUND AND RELATED WORK

In this section we present an overview of DASH architec-

ture, summarise PIE, CoDel, and FQ-CoDel AQMs and review

related work.

A. Dynamic Adaptive Streaming over HTTP (DASH)

Modern Internet video streaming platforms have adopted

DASH-based content delivery techniques. In DASH streaming

systems [7], video content is encoded into multiple versions

at different discrete bitrates (quality). Each encoded video is

then segmented into small video segments or chunks, each

containing a few seconds of video. Chunks from one bitrate

are aligned in the video time line to chunks from other bitrates

so that the client can smoothly switch bitrates, if necessary,

at the chunk boundary. The server provides a corresponding

Media Presentation Description (MPD) file which describes

the information of the available content and associated encod-

ing bitrates or Representation Rates (RR). Video content and

MPDs are served by standard HTTP servers.

DASH is layered on top of HTTP/TCP, hence it does

not control the content transmission rate directly. Instead it

relies on the underlying TCP algorithm to regulate the content

transmission rate, which is determined by congestion feedback

from the client-server network path. To begin a streaming

session, the client requests an MPD file from the content server

and then starts requesting video chunks as fast as possible

to fill the playout buffer (typically back-to-back requests in

sequence using one persistent TCP connection). Once the

playout buffer is full, the player enters a steady state phase

of periodically downloading new chunks as previous chunks

are consumed and rendered as audio/video content.

In steady state, the ON period represents DASH client

downloading a chunk, and the OFF state represents otherwise.

The time between the start of two consecutive ON periods is

typically the chunk size – amount of video content within each

chunk – in seconds (aka cycle time). The client typically keeps

a few chunks in the buffer to maintain adequate playback.

TCP estimates the number of bytes that can be ‘in flight’

and unacknowledged at any given time with its congestion

window (cwnd). cwnd starts low1, grows as packets are

received and acknowledged by the client, and shrinks when

packets are lost or the if connection has gone idle for too

long [8]. A DASH client’s chunk retrieval process means TCP

sends repeated bursts of packets followed by some periods

of inactivity. If cwnd is too low, or fails to grow quickly

enough, the DASH client experiences low per-chunk Achieved

Rate (AR)2. If cwnd grows beyond the path’s bandwidth-delay

product (BDP) it starts filling bottleneck queues and inflicting

additional queuing delays on all flows sharing the bottleneck.

DASH clients use adaptive bitrate (ABR) algorithm to adapt

to fluctuating network conditions. ABRs use various feedback

signals observed for each chunk (such as recent AR estimates

1The default was 2 packets, but some recent OSes now start TCP connec-
tions with a cwnd of 10 packets long.

2Video chunk size divided by the time taken to receive it (essentially an
estimate of per-chunk TCP throughput).

and/or playout buffer occupancy) to select a suitable RR for

the next chunk to be downloaded. Consider an example when

DASH client uses AR as its ABR feedback signal. If AR is

high, ABR should select a higher RR. On the other hand, if

AR decreases, ABR should dynamically switch to a lower

RR level to avoid playout buffer under-run. A good ABR

algorithm will strike a delicate balance between reacting to

network conditions and adapting video RRs smoothly [9].

B. PIE, CoDel and FQ-CoDel

Unlike earlier AQM schemes, PIE, CoDel and FQ-CoDel

are modern approaches that aim to keep long-term queuing

delays low instead of merely controlling the queue occupancy.

1) Single queue PIE and CoDel: PIE and CoDel operate

on single queues and keep queuing delays low by dropping

packets when queuing delays persistently exceed a target

delay, Ttarget (PIE: officially 15ms [2], although the Linux

implementation currently defaults to 20ms [10]; CoDel: 5ms).

PIE introduces a burst tolerance parameter which (by de-

fault) allows packets arriving within the first 150ms of an

empty queue to pass successfully.3 After this, when a packet

arrives, it is randomly dropped with a certain probability. This

probability is periodically updated, based on how much the

current queuing delay (estimated from the queue length and

the dequeue rate) differs from Ttarget = 15ms and whether

the queuing delay is currently going up or down. Packets of

ECN-enabled flows will be marked instead of being dropped

when the dropping probability is <10%.

CoDel [3] tracks the (local) minimum queuing delay ex-

perienced by packets in a certain interval (initially 100ms).

When the minimum queuing delay is less than Ttarget = 5ms
or the buffer size is less than one full-size packet, packets are

neither dropped nor ECN marked. When the minimum queuing

delay exceeds Ttarget, CoDel enters the drop state where a

packet is dropped and the next drop time is set. The next drop

time decreases in inverse proportion to the square root of the

number of drops since the dropping state was entered. When

the minimum queuing delay is below Ttarget again, CoDel

exits the drop state.

2) Multi-queue FQ-CoDel: FQ-CoDel [4] classifies flows

into one of 1024 (by default) different queues by hashing the 5-

tuple of IP protocol number and source and destination IP and

port numbers. Each queue is separately managed by the CoDel

algorithm. A modified Deficit Round Robin (DRR) scheduler

services these queues, in which each queue can dequeue up to

a quantum of bytes (one MTU by default) per iteration. This

scheme gives priority to queues with packets from new flows

or from “sparse” flows with packet arrival rate small enough

so that a new queue is assigned to them upon packet arrival.

A bottleneck managed by FQ-CoDel can achieve low latency

(due to per-queue CoDel), relatively even capacity sharing

(due to the fixed hashing function) and priority for low-rate

or transactional traffic (such as DNS and VoIP traffic).

3Earlier versions of PIE stipulated 100ms burst tolerance [11], later in-
creased to 150ms in the final published RFC [2].

Authors’ copy. To appear in the 26th International Conference on Computer Communications and Networks (ICCCN 2017)

July 31 - August 3, 2017. See notice on the first page.
2

Due to the FQ and DRR scheduling behaviours, we expect

to see DASH achieving a higher aggregate throughput when

using multiple concurrent connections for chunk retrieval in

the presence of other competing flows.

C. Related Work and Motivation

Evaluations of DASH-based streaming over modern AQM

schemes are only beginning to emerge. A recent experimental

study of DASH traffic over AQMs showed a single DASH

stream with no cross traffic benefits from PIE’s higher burst

tolerance and queuing delay targets [12]. However, in the pres-

ence of cross-traffic, the FlowQueue DRR scheduler provides

better flow isolation and capacity sharing, hence protecting

DASH flows from collateral damage in both upstream and

downstream cases.

Huang et al. [13] use traffic traces from major streaming

companies to understand the interactions between TCP and

DASH-like traffic. They identified a vicious cycle – the

“downward spiral”. During multi-second OFF periods, TCP

resets cwnd to its initial value due to idle periods longer

than the current minimum TCP retransmission timeout (around

200ms in their experiments). Consequently cwnd ramps up

in slow start mode to retrieve subsequent chunks. The client

still selects the highest sustainable RR when there are no

cross traffic. However, when cross traffic starts to fill the

bottleneck buffer during OFF periods, packet losses start

to occur, resulting in low video throughput for subsequent

chunks. As throughput decreases further, the client requests

chunks of lower RR and smaller size. As chunk size decreases,

TCP has less time to reach its fair share before it finishes

downloading each chunk, leading to further underestimation

of available capacity, causing the client to be trapped in the

downward spiral.

Our motivation evolves from the use of parallel connections

to accelerate file transfers (present in applications such as

GridFTP [14], download accelerators and web browsers). Most

related work in the context of video streaming uses multiple

connections to download different chunks (inter-chunk/full

chunk concurrency) throughout a streaming session [15], [16],

[17], [18], [19]. The public DASH client, dash.js prior to

version 1.4 [20], also included a prototype for parallel down-

loading of video chunks.

A chunklets approach differs in that we divide individual

range-based chunk requests into a set of intra-chunk range

requests sent in parallel over long-lived connections to the

content server. The underlying idea has previously appeared

in [21] (without giving it a particular name), and been dis-

cussed among dash.js developers and several companies but

not yet implemented in dash.js. The authors of [21] evaluated

the potential for this approach to improve DASH performance

over wireless environments. They measured the performance

with forty 15-sec chunks, varied the number of connection(s)

from one to seven and tested them against three different

packet loss rates, RTT values, bandwidths and four different

chunk sizes. They also did an analysis on the 100-packet FIFO

queue occupancy with simulations.

To the best of our knowledge, we are the first to experi-

mentally evaluate and characterise the impact of intra-chunk

parallel retrieval (chunklets) in AQM environments by using

real equipment with a well-known and well-supported DASH

client. Our experiments also collect more chunk samples than

in previous work and consider greedy/elastic bulk transfers as

competing traffic flows.

III. EVALUATION METHODOLOGY

Here we describe our use case model, experiment testbed

setup and performance measures.

A. Consumer home network environment

Figure 1 illustrates our use case model – a home network

that is connected to local or international video streaming

and other Internet-based services over a last-mile broadband

link. This link typically offers asymmetric bandwidth. The

downstream bottleneck (for traffic flowing into the home) is

at the ISP-end while the upstream bottleneck (traffic flowing

away from home) is at the home gateway.

��������	
����

����������

���������������	�
��������

����
�	�������
���

����
������
�����

�
�����
	

������	�
�������

	�
����	

��
���������

������	����	��

�������	��
���������

��
���������

��
��
��
��
	

��
��
��
	

������	
����

����������

����
�	�
����	

Fig. 1. Use case model: A home network connected to the Internet with
AQM enabled at the ISP-end or/and home gateway

AQMs are likely to replace traditional FIFO in modern and

affordable home gateways, with ISPs progressively upgrading

their equipment to use AQMs. We establish baseline results

by considering DASH and elastic TCP traffic flows being

bottlenecked by PIE and FQ-CoDel AQMs on both ends. Then

we explore scenarios where AQMs are either deployed at the

ISP-end or at the home gateway, representing likely scenarios

where ISP has upgraded to using AQM while the consumer

still use traditional FIFO modem, and vice versa.

1) Sharing the last-mile bottleneck: Due to its chunked

video retrieval, DASH generates a periodic ON-OFF traffic

pattern in the steady state. Interesting challenges arise when

DASH’s OFF period overlaps with other downstream traffic.

As noted in Section II-C, competition with other bulk (elastic)

data transfers can lead the DASH client into a “downward

spiral” of progressively lower rate estimations.

Upstream bulk transfers compete with a DASH connection’s

TCP acknowledgement (ACK) packets. When the upstream

link is congested, the DASH connection’s ACKs suffer addi-

tional queuing delays (and potentially loss), indirectly limiting

the DASH client’s estimate of available network capacity.

Examples of competing traffic in the home include

file downloads/uploads, VoIP calls, video conference calls,

online gaming, mobile devices downloading updates or

synchronising/back-up data to the ‘cloud’, PCs downloading

Authors’ copy. To appear in the 26th International Conference on Computer Communications and Networks (ICCCN 2017)

July 31 - August 3, 2017. See notice on the first page.
3

OS updates and so on. All of these activities have impact on

latency-sensitive applications such as DASH video streams.

2) Representative network conditions: Video streaming

providers typically try to install content servers or caches close

to their customers, to minimise delays caused by a path’s base

RTT and reduce the cost of transiting intermediate network

providers. So we will emulate relatively low RTTs.

Home broadband services vary around the world. We

choose to emulate a last-mile offering 12Mbps downstream

/ 1Mbps upstream (12/1 Mbps), such as would be achieved

by a medium-performance ADSL2+ connection. The 12Mbps

downstream significantly exceeds the highest representation

rate of our video dataset (Table I), ensuring our DASH client is

able to retrieve at the highest RR during baseline experiments.

We also explore a last-mile offering 25/5 Mbps service,

covering the case where a single High Definition (HD) RR is

being retrieved throughout the streaming session and ensure

that chunklets are not afflicted by the “downward spiral”.

B. Experimental Setup

Figure 2 shows our TEACUP-based [22] testbed. The router

runs 64-bit FreeBSD 10.1-RELEASE to provide a config-

urable bottleneck (bandwidth, delays, queuing disciplines,

buffer sizes) between client(s) and server(s) on either side

of the router. DASH client, chunkleting proxy and lighttpd

(http://www.lighttpd.net/) server run on 64-bit FreeBSD 10.1-

RELEASE whereas iperf (https://iperf.fr/) client and server run

on 64-bit Linux openSUSE 12.3 (kernel 3.17.4).

��������	
�

������	�	

�����	
	�������	
�������������	
���

��	��

���	
���	�	
��	��

���	
���	�	

����������������
�

������������������
�

�������� !"

����

������� �
�����

Fig. 2. Experimental setup: DASH client requests and receives chunk via
proxy, proxy initiates N requests and reassembles N chunklets responses
before returning chunk to client. Chunklet flows compete with elastic TCP
flows over the same FIFO/AQM bottleneck.

1) Emulating network conditions: We use FreeBSD’s dum-

mynet/ipfw [23] to provide FIFO, PIE and FQ-CoDel queue

management schemes and emulate specific last-mile rate limits

and base RTTs. Packets sit in a configurable bottleneck queue

while being rate-shaped to the bottleneck bandwidth, and then

sit in a 1000-packet buffer while being delayed. The bottleneck

queue is 100 packets for FIFO experiments (to exceed each

path’s bandwidth delay product) and 1000 packets for PIE

and FQ-CoDel experiments. We configure the upstream and

downstream queues separately, hence we can apply different

queuing disciplines and buffer sizes in each direction.

2) Creating DASH and competing flows: We use dash.js

version 2.4.1 (https://github.com/Dash-Industry-Forum/dash.

js/wiki) as our DASH client, and our DASH server is a lighttpd

TABLE I
REPRESENTATION RATES AVAILABLE IN 2-SEC DATASET

Resolution Encoding Level Representation Rates

320x240 1 - 3 46, 89, 131kbps
480x360 4 - 8 178, 222, 263, 334, 396kbps
854x480 9 - 10 533, 595kbps
1280x720 11 - 14 0.8, 1.0, 1.2, 1.5Mbps

1920x1080 15 - 20 2.1, 2.5, 3.1, 3.5, 3.8, 4.2Mbps

version 1.4.35 web server (with persistent HTTP connections

and range-requests support enabled). Our dash.js client uses a

throughput-based ABR strategy, where the next RR is based

on the smoothed average ARs of the previous three chunks.

We use FreeBSD and TCP NewReno on our DASH server

and DASH client.4 We use Linux and TCP CUBIC to generate

long-lived competing flows with iperf, as many online services

run on Linux and CUBIC is known for its effective bandwidth

utilisation (which provides a good stress test for DASH

streams). All hosts disable Explicit Congestion Notification

(ECN) and enable both TCP window scaling and receive buffer

auto-tuning.

We use the ITEC-DASH BigBuckBunny dataset5 [24] and

select content encoded in 2-sec chunks of video (cf. Netflix

using 2-sec chunks). Chunks are available at 20 different

encoding RRs ranging from approximately 46kbps to 4.2Mbps

as shown in Table I. We ran experiments for 400 seconds to

ensure sufficient 2-sec samples were collected.

3) Chunkleting proxy: Rather than modifying dash.js to

‘do’ chunklets, we adapted an open-source HTTP proxy [25]

to transparently turn chunk requests into chunklet requests,

then stitch the replies back together into chunks. This allows

us to run experiments using a stock-standard dash.js client.

Specifically, our proxy intercepts each HTTP GET request

from the dash.js client and parses any range-requests to

identify the chunk being requested. The proxy calculates N

consecutive sub-ranges of bytes to represent the N chunklets,

and sends N simultaneous HTTP GET requests (one for each

chunklet’s sub-range) over N parallel persistent connections to

the DASH server.

As responses arrive from the DASH server, the proxy re-

assembles and concatenates N chunklet responses, recreating

the full chunk requested by the dash.js client. The proxy’s

actions are thus transparent to both the client and the server.

Hence, chunkleting with or without proxy does not make any

material difference to the underlying network characteristics.

For implementation simplicity, a chunk of Y bytes results

in (N − 1) chunklets of int(Y/N) bytes and a final chunklet

carrying between [int(Y/N)] and [int(Y/N)+(N−1)] bytes.

C. Performance indicators

Traffic was captured using tcpdump on all host and router

interfaces. This data was then processed by Synthetic Packet

4Inspired by FreeBSD in Netflix’s OpenConnect platform (https://
openconnect.netflix.com/software) and NewReno being similar to the default
TCP in Apple’s OSX and older Microsoft servers.

5Full-length video sequences encoded at different bitrates, resolution
and quality can be downloaded at: http://www-itec.uni-klu.ac.at/ftp/datasets/
DASHDataset2014/BigBuckBunny

Authors’ copy. To appear in the 26th International Conference on Computer Communications and Networks (ICCCN 2017)

July 31 - August 3, 2017. See notice on the first page.
4

Pairs (SPP) [26] to construct per-packet network-layer RTT

measurements, RRs were extracted by parsing the client’s

HTTP GET requests, and per-chunk ARs were calculated

using payload lengths extracted from HTTP response headers

and the time taken to transfer packets making up each chunk.

We calculated Smoothed AR (SA) – the average of the AR from

the last three chunks – to mimic the signal used by dash.js to

select the next chunk’s RR.

Studies have shown that users are sensitive to frequent and

significant RR switches [27], [28], so we use the extracted

RRs to derive the number of RR transitions and calculate the

following instability index as defined in [29]:

k−1∑

d=0

|bx,t−d − bx,t−d−1|.w(d)

∑k

d=1
bx,t−d.w(d)

Our instability index is obtained by calculating the weighted

sum of the number of RR level (Table I) transitions within

the last k = 10 video chunks (where bx,t is the encoding

level retrieved at time t), which is then normalised to a value

between 0 and 1 by dividing it by the weighted sum of all

RR levels observed in the last 10 chunks (corresponding to

20 seconds of video). The weight function [w(d) = k − d] is

applied to add a linear penalty to the more recent RR switches.

The window is then slided in steps of one, and the instability

index is re-calculated for each window. Although an instabil-

ity index close to zero indicates a more stable system, the

instability index cannot be used alone to determine a DASH

flow’s likely QoE. It must be considered in the context of

corresponding RR distributions, with users potentially valuing

one over the other. For instance, a DASH flow experiencing

high instability with higher median RR might provide better

experience than a DASH flow with low instability at lower

median RR. A DASH flow that self-limits itself to a lower

range of RRs might present with low instability index but it

is in fact a “consistently bad” experience for the user.

In order to ensure their relevance to long-term viewing, we

calculate SA and RR statistics after the playout buffer is pre-

filled (i.e. during DASH ON-OFF steady state).

IV. RESULTS AND ANALYSIS

In this section we present our experimental results and

analysis. We first illustrate how chunklets can improve DASH

performance, then we consider scenarios where DASH can

benefit from chunklets when competing with either down-

stream or upstream elastic flows. Lastly, we consider the

impact of chunklets under deployment scenarios where the

bottleneck is AQM-aysmmetric.

A. The Achieved Rate Multiplication Effect

Modern AQMs aim to keep long term queuing delays low

by providing negative feedback with packet losses to reduce

the transmission rate of the sender. This also indirectly help

flows sharing the bottleneck to attain a relatively fair share

of the bandwidth. In particular, when FQ-CoDel is used, the

bottleneck capacity is shared evenly among all flows.

With regular DASH, a chunk is retrieved and transferred ev-

ery cycle time sequentially. When competing with x number of

flows, its effective per-chunk achieved rate (AR1) is 1/x of the

bottleneck bandwidth (C) when the bottleneck is managed by

FQ-CoDel, hence the DASH client can only retrieve RR that

is sustainable by AR1. However, when using N concurrent

chunklets, each chunklet flow is perceived as a unique flow

to FQ-CoDel, hence DASH’s AR sees a multiplication effect

with an increased rate of ARN = (N/x) ∗C, hence allowing

the client to retrieve RR sustainable up to ARN .

As an illustrative example, Figure 3 shows the throughput,

induced RTT and cwnd evolution of two chunklets overlap-

ping in time and their competing flows6. In this case, the

DASH client is able to attain an average of 2/6th of the

25Mbps bottleneck capacity (~8.3Mbps) whereas each bulk

TCP flow can only achieve 1/6th of the capacity (~4.2Mbps)

when DASH is in the ON period (Figure 3a). Chunklets may

not be fully overlapping in time because ACK spacing and

cwnd growth can slightly differ in time for each chunklet

flow. An AR multiplier effect will only be observed during

periods where chunklets are overlapping in time.

Nevertheless, it is important to note that chunklets cannot be

too small in size so as to allow the number of HTTP headers

to dominate the transmission at the chunk level7. A good

chunkleting algorithm will calculate and determine a safety

threshold for N and adapt N if necessary so that a certain

“chunk efficiency” can be maintained. Our current work do

not consider adaptive chunkleting, however we have verified

that the overhead percentages of our N values are minimal and

do not adversely affect DASH client’s chunk retrieval process.

●●

●

●

●

●●●●●●●

●

●●

●

●●●●

●●

●

●

●●

●

●

●

●●●●●

●●●

●

●●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●●

●●●

●

●●●

●

●●●

●●●●

●●

●●●●●

●●

●

●

●

●●

●●●

●

●●●

●

●●●

●

●●

●●●

●●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●●●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●

●●●

●●●●●●●●●

●

●●

●●●●●●

●

●●●●

●

●

●●

●●●●●

●●●

●●

●●●●●

●

●

●

●

●

●●

●●

●

●

●●●

●●

●

●●●

●●

●●

●

●●●

●●

●

●

●●●●

●●●●●●●●●●

●●

●

●

●●●●●●●●●●●●●

●●●

●●●●●●●●●●

●●

●●

●

●●●●●●●●

●

●●

●●●●

●●

●●●●

●●●●

●●●●●●

●●●

●●

●●●

●

●

●●●●

●●

●●●

●●●●●●●●●

●●

●●

●●

●

●●

●●

●

●●●●

●

●

●

●

●●●

●●●●●●●●●

●●

●●

●●

●

●●●●●●●●●●●●

●

●

●

●

●●●

●

●●●●●

●●

●

●

●●

●

●

●

●●●●●●●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●●

●●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●●

●●●

●

●●

●

●

●

●

●

●●

●

●●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●●

●●●●

●●●

●

●

●

●

●

●●●●●●●

●

●●●●●●●

●

●●●●

●●●

●●●●

●

●

●

●●●●●●●●●

●

●

●●

●

●

●●

●●●●●●

●

●

●

●●●●●●●

●

●●●●●●●●●

●●

●

●

●●●

●●●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●

●●●●●●

●

●●●●●●●

●●

●

●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●●●

●

●●●●●●●●

●

●

●●●●●

●●●

●

●●

●

●●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●●

●

●●●

●●●

●

●●

●

●●●

●●

●●

●

●●

●●

●●●●●

●●●●●●

●●●●●●●●

●●●

●●●●●

●●●●●●●●●●

●●●●●●

●●●●

●

●

●●●●●

●●●●●●●●

●●●●●

●●

●●●●●●●●

●●

●

●

●

●

●●

●

●●●●

●

●

●●

●●●

●●●●

●●●

●●

●

●●●●

●●

●

●

●

●●

●

●●●

●

●

●

●●●●●●●●●●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●●

●●

●●

●●●●●●

●●●●●●●

●

●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●●

●●

●

●

●●

●

●●

●●

●●●

●

●●●●●●

●

●●

●

●●●

●

●●

●

●

●●

●

●●

●

●●●●●●●

●●●●●●●

●

●●

●●

●●

●

●●●

●

●●●

●

●

●

●●●●

●●

●●

●●●

●

●●

●

●

●●●

●

●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●

●

●

●●●

●

●

●●●●

●

●●●●●●●●●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●●●●

●

●●

●●

●

●

●

●●

●

●

●●●●●●●

●

●

●

●●

●

●●●●●●●

●

●●●●●

●●

●●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●

●

●●

●

●●●●●●

●●●●●●●

●

●●

●

●●●

●

●●●●●●●●●●

●●●

●

●

●

●

●●●

●

●●

●

●

●●●●

●●

●

●●●●●

●

●

●

●●●●

●

●●

●●

●●

●●●

●●●●●●●●

●

●

●●●●●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●●●

●●

●●

●

●

●

●

●●●●●

●

●●●●●●●

●

●

●

●

●

●●

●●●●●

●●

●

●●

●●●

●

●●

●●●●●

●●●●●●●●●

●●

●●

●

●

●●

●

●

●●

●●●●

●●●●●

●●●●●

●

●

●●

●

●●●

●

●

●

●●●

●

●

●●●

●

●●●●●

●

●●●●

●

●

●

●●

●●

●●●●●

●

●●●

●

●

●●●

●

●●●●●

●●●

●●

●

●

●●

●

●●●

●

●●●

●●●●

●

●

●●●●

●●●

●●●●●●●●

●

●●

●●●●

●

●●●●●●●●●●●●

●●●●

●

●●●●

●●

●●

●●

●●●●●●●●

●●●

●●

●

●●●●●●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●●

●●

●

●

●●

●

●

●●●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●

●

●●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●●

●●●●●●

●

●●

●

●

●

●●●

●●●

●

●●●

●●

●

●

●●

●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●●●●●●●●●●

●

●●●●●

●●●

●

●

●●●

●●●

●

●●

●

●●●●

●

●

●●●●●●●

●

●●●●

●

●●●●●●●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●

●

●

●

●●

77 78 79 80 81 82 83

0

2

4

6

8

Time (sHFV)

T
h
ro

u
g
h
p
u
t

(0
b
p
s
)

●
●●
●
●
●●
●●
●
●
●●●
●
●
●
●●●●●●●
●
●●
●
●●●●
●●
●
●
●●
●
●
●
●●●●●
●●●
●
●●
●●●●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●
●●
●●●
●

●●●
●

●●●
●●●●
●●
●●●●●
●●
●
●
●
●●
●●●
●
●●●
●
●●●

●
●●
●●●
●●
●●
●
●
●
●●●
●
●
●
●
●
●●●
●
●
●
●
●
●
●●●
●
●
●
●
●
●●
●●●●
●●●
●
●
●
●
●
●●
●●
●
●
●
●
●●●●
●●●
●●●●●●●●●
●
●●
●●●●●●
●
●●●●
●
●
●●
●●●●●
●●●
●●
●●●●●
●
●
●
●
●
●●
●●
●
●
●●●
●●
●
●●●
●●
●●
●
●●●
●●
●
●
●●●●
●●●●●●●●●●
●●
●
●
●●●●●●●●●●●●●
●●●

●●●●●●●●●●
●●
●●
●
●●●●●●●●
●
●●
●●●●
●●
●●●●
●●●●
●●●●●●
●●●
●●
●●●
●
●
●●●●
●●
●●●
●●●●●●●●●
●●
●●
●●
●
●●
●●
●
●●●●
●
●
●
●
●●●
●●●●●●●●●
●●
●●
●●
●
●●●●●●●●●●●●
●
●
●
●
●●●
●
●●●●●
●●
●
●
●●
●
●
●
●●●●●●●
●
●
●●●●
●
●●
●
●

●
●
●●
●
●●
●●
●
●●
●

●

●
●●
●
●●
●

●
●●
●
●●●
●
●●

●

●●

●
●

●
●●
●●

●

●
●
●●

●●

●

●
●●●
●
●

●

●●●
●
●
●
●

●●
●
●
●●●
●
●●
●

●

●●
●●●
●
●●
●
●
●

●

●
●●
●

●●
●●●
●
●
●●
●
●
●
●
●
●
●
●●
●
●●●●
●
●●●●●●●
●
●●●●●●●●●●
●●●●
●●●
●
●
●
●
●
●●●●●●●
●
●●●●●●●
●
●●●●
●●●
●●●●
●
●
●
●●●●●●●●●
●
●
●●
●
●
●●
●●●●●●
●
●
●
●●●●●●●
●
●●●●●●●●●
●●
●
●
●●●
●●●●●
●
●●●●●●●●●
●
●●●●●●●
●
●●●
●●●●●●
●
●●●●●●●
●●
●
●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●●●
●
●
●
●
●●
●
●
●
●●●●●●●
●
●●●●●●●●
●
●
●●●●●
●●●

●
●●
●
●●

●
●
●
●●
●
●
●●●●
●
●●
●
●
●●
●
●●●
●●●
●

●●
●
●●●

●●
●●
●
●●

●●
●●●●●
●●●●●●
●●●●●●●●
●●●
●●●●●
●●●●●●●●●●
●●●●●●
●●●●
●
●
●●●●●
●●●●●●●●

●●●●●
●●
●●●●●●●●
●●
●
●
●
●
●●
●
●●●●
●
●
●●

●●●
●●●●
●●●
●●
●
●●●●
●●
●
●

●
●●
●
●●●
●
●
●
●●●●●●●●●●
●
●●
●
●●
●
●
●●
●
●

●

●
●
●
●
●●●●●
●
●●●
●
●
●●
●●
●●
●●●●●●
●●●●●●●
●
●
●●
●●
●
●●
●
●
●●
●
●●
●
●
●●
●●
●
●

●●
●
●●
●●
●●●
●
●●●●●●

●

●●
●

●●●

●

●●
●
●
●●
●
●●
●

●●●●●●●

●●●●●●●

●
●●
●●
●●

●
●●●
●
●●●
●
●
●
●●●●
●●
●●
●●●

●
●●
●
●
●●●
●
●●●●
●
●●●●●●●
●
●●●●●●●
●
●●●●●●●
●
●●
●
●
●
●●●●●●●●●●●●●●●●

●
●●●●●●●
●
●●●●
●
●
●●●
●
●
●●●●
●
●●●●●●●●●
●
●●●●●

●
●●
●
●
●
●

●
●
●
●
●
●●●●●●●●●
●
●●
●
●●●●
●
●●
●●
●
●
●
●●
●

●
●●●●●●●
●
●
●
●●
●
●●●●●●●
●
●●●●●
●●
●●●
●●
●
●
●
●
●
●
●
●
●●●
●
●
●
●
●
●●●
●
●
●
●
●
●●●●●●●
●
●●

●
●●●●●●
●●●●●●●
●
●●
●
●●●
●
●●●●●●●●●●
●●●
●
●

●
●

●●●
●
●●
●

●
●●●●
●●
●
●●●●●
●
●
●
●●●●
●

●●
●●
●●
●●●
●●●●●●●●
●
●
●●●●●
●
●
●
●●●
●
●
●
●
●
●
●●●
●
●
●
●
●
●●●
●
●
●
●
●
●●
●●●●
●●
●●
●
●
●
●
●●●●●
●
●●●●●●●
●
●
●
●
●
●●
●●●●●
●●
●
●●
●●●
●
●●
●●●●●
●●●●●●●●●
●●
●●
●
●
●●
●

●
●●

●●●●
●●●●●
●●●●●
●
●
●●
●
●●●
●
●
●
●●●
●
●
●●●
●
●●●●●
●
●●●●
●
●
●
●●
●●
●●●●●
●
●●●
●
●
●●●
●
●●●●●
●●●
●●
●
●

●●
●
●●●
●
●●●
●●●●
●
●
●●●●
●●●
●●●●●●●●
●
●●
●●●●
●
●●●●●●●●●●●●
●●●●
●
●●●●
●●
●●
●●
●●●●●●●●
●●●
●●
●
●●●●●●
●●●
●
●
●
●
●

●
●●●
●
●
●
●
●
●●
●
●
●●
●●

●●
●
●
●●
●
●
●●●
●
●●
●

●
●●●●●
●

●

●
●
●

●
●●
●
●
●
●
●
●
●
●●●
●●●

●
●
●●
●●
●

●
●
●●
●
●
●
●
●

●
●
●
●●●●

●
●●●
●
●
●●
●
●●●
●
●●
●●
●
●
●●
●
●
●

●
●
●
●

●
●●●

●

●●●
●
●
●

●
●●●
●
●
●
●
●
●
●
●●
●
●●●●
●
●●
●
●
●●
●●●●●●
●
●●
●
●
●
●●●
●●●
●
●●●
●●
●
●
●●
●●●●●
●
●
●
●
●
●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●●●
●
●
●
●
●
●●
●●●●●●●●●●●
●
●●●●●
●●●
●
●
●●●
●●●
●
●●
●
●●●●
●
●
●●●●●●●
●
●●●●
●
●●●●●●●
●
●●●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●
●
●
●
●

●
●●●
●
●
●
●
●
●●●●●

● Bulk TCP Chunklet #1 Chunklet #2

(a) Throughput vs time

●●●

●

●●●●●●

●

●●●●●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●

●●●
●●

●●●●●

●

●

●●●●

●

●

●●●●

●

●●●

●

●●

●

●●●

●

●●

●

●●

●

●●●●●●

●●●●

●

●●●●

●●●●●

●

●

●●●

●●

●

●●
●●●

●

●●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●●●

●●●

●●

●●●●
●●●

●●●

●●●

●

●

●●●●●●

●●

●●●●●●●
●
●●

●●●●●●

●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●●

●●●●

●

●●

●

●

●●●●

●

●

●●

●

●

●●●●●●●●●●●●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●●●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●
●

●●

●●

●

●●

●●●●●●

●

●●●

●●

●

●●●●●

●

●●

●●

●

●

●

●

●

●●●●

●

●

●●●●

●

●●●●●

●

●

●●●●●
●●●●●●

●

●

●●●●

●

●

●●●●

●

●

●●

●●●

●

●●●

●●●

●

●●●●

●

●

●

●●●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●●

●

●

●●●●

●●

●

●●●●

●

●

●

●●●●●●

●

●

●●

●

●●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●●●●

●●●

●●●

●

●

●●●

●

●

●

●

●●●

●

●
●●●●●●●●●●●

●

●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●●●

●

●●

●●●●●

●●

●●

●

●●●●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●●●

●

●●

●●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●●●

●

●●

●

●

●

●●●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●●

●

●
●●●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●●

●

●●●●●●●

●●

●●●●●

●

●●●●●●●

●

●●

●●●●●●●●●●
●●●●

●●

●●

●●●●

●

●

●

●

●●●●●

●

●●

●

●

●

●
●

●●

●

●●

●

●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●

●●●●

●

●

●●●●

●

●

●
●●●●●

●●●●

●●

●

●●●●●

●●●●●

●

●

●●●●

●

●

●

●●●●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●●●

●

●

●●●●

●

●

●●●

●

●

●●●●●●

●●●●

●

●●●

●●●

●

●●●●●

●

●

●●●

●●

●●

●●

●

●

●

●

●

●●●●●●●●●●

●

●●●

●●●

●●●●

●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●●●●●

●

●

●●

●

●●●

●

●

●●

●●●●●

●

●●●

●

●

●●

●●●●●●

●

●●●●●

●

●●

●●●

●

●●●●●

●

●

●●●●●

●

●●●●●

●

●●●●●●●●●

●●●●

●●●

●●●●●

●●●●●●●

●

●●●●●●

●

●●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●●●●

●

●

●

●●●●●●

●●

●

●

●●

●

●

●●

●

●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●●●

●●●●●

●

●

●

●

●●●

●●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●●

●●●

●●●

●

●●

●

●●

●

●

●

●●

●●●●●●

●

●●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●●●●

●

●●●

●

●

●●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●
●●●●

●

●

●●●●

●●

●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●●

●●

●●●●●

●

●●●●●●

●

●●●●●

●

●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●●

●●

●

●

●●

●●

●●

●●●

●

●●

●●●●●●

●●●●

●●●●●●●●●

●●●

●●●

●●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●●●●

●

●●●●●

●

●●●●●

●

●●●●●●●●●●●●

●

●●●●●

●

●●●●

77 78 79 80 81 82 83

0

20

40

60

Time (sHFV)

R
T

T
 (

m
s
)

●

●●●●
●●●●●●●●

●

●●●●●●
●
●●●●●
●
●●●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●●●●●
●●●●●
●
●
●●●●
●
●
●●●●
●
●●●

●

●●
●
●●●

●

●●
●
●●

●

●●●●●●

●●●●
●

●●●●
●●●●●
●
●
●●●

●●

●
●●●●●
●
●●●

●●●
●

●

●

●

●

●●

●

●●

●

●

●
●

●●
●●●

●●●

●●

●●●●●●●

●●●

●●●

●

●

●●●●●●

●●

●●●●●●●●●●
●●●●●●
●
●●●●●

●

●

●
●

●

●●

●
●

●
●

●
●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●●

●●●●
●

●●
●

●

●●●●
●
●

●●

●
●

●●●●●●●●●●●●●●

●
●●●
●●

●

●
●
●

●
●

●

●

●
●
●
●●
●

●
●
●●

●
●
●
●
●

●

●
●
●
●
●●
●●●●
●
●●●●
●
●●●●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●●●

●●

●

●●

●●

●

●
●

●
●

●●
●

●
●
●

●●●●●

●

●●●●●●●●●●●●●●●

●●
●●

●

●●
●●●●●●

●

●●●

●●

●
●●●●●
●
●●

●●

●
●

●
●

●

●●●●
●

●

●●●●

●

●●●●●

●

●
●●●●●●●●●●●

●

●
●●●●

●

●
●●●●

●

●
●●

●●●

●
●●●

●●●
●
●●●●

●
●
●
●●●

●
●

●
●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●●

●

●

●●●●

●●

●

●●●●

●

●
●
●●●●●●
●
●

●●

●

●●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●

●
●●

●●●●
●●●

●●●
●

●

●●●
●
●
●

●

●●●

●
●●●●●●●●●●●●
●
●●●●●
●
●●●●●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●●●
●

●●
●●●●●
●●
●●

●

●●●●
●●
●

●

●●

●

●

●
●
●

●
●●
●●
●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●●●
●

●●

●●

●●
●

●●
●

●

●

●
●●

●
●
●
●●
●
●●

●
●●●●

●
●●
●
●
●

●●●
●
●
●
●●
●●

●

●
●
●
●

●●
●

●

●●

●
●●

●
●●●
●
●●●●
●
●●●●
●
●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●●

●

●●●●●●●
●●
●●●●●
●
●●●●●●●
●

●●
●●●●●●●●●●●●●●

●●

●●
●●●●
●

●

●

●
●●●●●

●

●●

●

●

●

●●
●●

●

●●

●
●●●

●

●
●●●●●●●●●●

●

●
●●●●●●●●●●●

●

●
●●●●

●

●
●●●●

●

●
●●●●●●
●●●●

●●

●

●●●●●
●●●●●

●

●
●●●●

●

●

●
●●●●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●●

●●

●

●

●

●

●

●●●●●
●

●
●●

●

●

●

●
●●●
●
●
●●●●

●

●
●●●
●
●
●●●●●●
●●●●
●

●●●

●●●
●
●●●●●

●
●
●●●

●●

●●

●●

●

●
●

●
●

●●●●●●●●●●
●
●●●
●●●
●●●●
●●●●●●●●●●●●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●
●●●●●

●

●

●●

●

●●●
●

●
●●
●●●●●
●
●●●

●

●
●●
●●●●●●
●
●●●●●
●
●●

●●●
●
●●●●●

●
●
●●●●●
●
●●●●●
●
●●●●●●●●●

●●●●
●●●

●●●●●

●●●●●●●

●
●●●●●●
●
●●●
●●

●

●

●

●

●

●

●

●

●●●
●

●
●

●●
●●●●●

●

●

●
●●●●●●
●●

●

●

●●

●

●

●●
●
●
●●
●
●●

●

●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●●●●●●

●●●●●

●
●
●
●

●●●
●●
●●●●
●●
●

●

●
●
●
●

●

●

●
●
●
●

●

●

●

●

●
●●●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●

●●●

●●●

●●●

●

●●
●

●●
●

●

●
●●
●●●●●●

●

●●●●
●
●
●
●

●
●
●●

●

●●

●

●
●●●
●●●●
●
●●●
●
●
●●●
●

●
●●●●●

●
●

●
●

●
●
●
●

●●

●
●

●●●
●

●

●●
●

●
●
●
●
●
●●●●●●

●

●
●●●●
●●
●●●
●●

●

●

●
●
●
●

●

●●
●
●
●
●

●●●
●

●

●●●●
●
●

●
●●

●●
●●●●●

●
●●●●●●
●
●●●●●
●
●●●●●●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●●●
●

●●●

●●

●●

●

●

●●
●●

●●
●●●

●

●●

●●●●●●
●●●●
●●●●●●●●●
●●●
●●●
●●
●

●●●●
●
●

●
●●●

●

●
●

●

●
●●
●

●
●●
●
●
●●

●●●●
●
●●●●●
●
●●●●●
●
●●●●●●●●●●●●
●
●●●●●
●
●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● Bulk TCP Chunklet #1 Chunklet #2

(b) RTT vs time

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●

●

●●●

●

●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●

●●●

●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●

●●●

●●

●

●●●●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●

●

●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●●

●●●

●

●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●

●●

●●●

●

●●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●

●●

●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●

●

●●●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●●

●●

●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

77 78 79 80 81 82 83

0

5

10

15

20

25

30

35

Time (sHFV)

●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●

●

●●●

●

●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●

●●

●●●

●●●

●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●

●●●

●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●

●●●

●●

●

●●●●●

●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●●

●●●

●

●

●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●

●●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●

●●●

●●●

●

●●●●

●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●

●●

●●●

●

●●●●

●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●

●●

●●

●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●

●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●

●

●●●●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●

●●●

●●●

●

●●●●

●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●●

●●●

●●

●●●●●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● Bulk TCP Chunklet #1 Chunklet #2

F
Z
Q
G
��
.
E
\
WH
V
�

(c) cwnd vs time

Fig. 3. Two DASH chunklets competing with four elastic TCP flows over
{25/5Mbps, 20ms RTT, FQ-CoDel} bottleneck

Figure 4 compares Smoothed AR (SA) of FQ-CoDel and

PIE when N = 1 (regular chunk, baseline), 5, 10 chunklets

6We only included one bulk TCP flow in these graphs for clarity, all the
other flows track these curves closely.

7N HTTP headers are required to transmit N chunklets. Hence, simplisti-
cally, the HTTP overhead ratio is (N ∗H)/[(N ∗H) + V], where H is the
HTTP header size and V is the video chunk size. The overhead ratio increases
as N increases and chunklets will start to become inefficient.

Authors’ copy. To appear in the 26th International Conference on Computer Communications and Networks (ICCCN 2017)

July 31 - August 3, 2017. See notice on the first page.
5

in a 200-second time window. SA across FQ-CoDel is more

stable and higher than PIE when N is high, with a peak of

~14Mbps when N = 10, as compared to ~10Mbps with PIE.

This is because FQ-CoDel enables chunklet flows to achieve

a fairer share of the bandwidth and overlapping more in time

(in the long term).

●
● ● ●

● ●

●

● ●

● ● ● ● ● ●
● ● ●

● ● ● ●

●
●

●

●

●
● ● ● ● ● ●

● ●
●

●
● ● ● ● ● ● ● ●

● ●
●

● ● ● ●
● ● ●

● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ●

● ● ●

●
●

●

● ●

●

● ● ● ● ● ●

● ● ●

● ● ● ● ●

● ●
●

● ●

● ● ●

● ● ● ● ● ● ●

100 150 200 250 300

0

5

10

15

Time (sHFV)

S
m

o
o

th
e

d
 A

R
 (M

b
p

s
)

●●●●●
●●

●
●●

●●●●●●●●●●●●●
●●●

●●● ●●●●●●●● ●●●●●●●●●
●●●

●●●● ●●●●●●●●● ●●●●●●●● ●●
●●●

●●
●

●●
●

●●●●●●
●●●

●●●●●
●●●

●●
●●●

●●●●●●●

● N=1 N=5 N=10

(a) FQ-CoDel

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

100 150 200 250 300

0

5

10

15

Time (sHFV)

S
m

o
o

th
e

d
 A

R
 (

M
b

p
s
)

●

●

●●

●

●

●
●●

●
●●

●

●
●

●●

●

●
●

●
●

●
●

●

●
●

●

● ●
●

●●

●
●

●

● ●
●●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●
●
●●

●●●
●

●
● ●

●●
●

●
●

●

●
●
●
●

●

●●

●

●

●
●

● N=1 N=5 N=10

(b) PIE

Fig. 4. Smoothed AR multiplier in steady state for N = 1, 5, 10 chunk(lets)

We demonstrate the effect of AR multiplication as N in-

creases by running experiments where the bottleneck capacity

(25/5 Mbps, 20ms RTT) is well in excess for a single chunk to

achieve at least the AR above the supplied 3.5Mbps RR (albeit

without chunkleting) when competing with four downstream

bulk TCP flows. Figure 5 shows the SA distribution as N

increases, when using FIFO, PIE and FQ-CoDel bottleneck.

FIFO shows lower SA but still manage to retrieve the 3.5Mbps

RR content; both PIE and FQ-CoDel allows DASH to experi-

ence an increase in SA when N increases. PIE shows a quicker

rise in SA than FQ-CoDel because it has a higher target delay,

allowing the queue to grow longer and TCP cwnd to grow

further, hence sending and allowing more packets in flight.

FQ-CoDel shows a wider distribution as N gets higher, due

to the variation in chunklet overlapping percentages causing

different AR multipliers as FQ scheduler services the queues.

B. Chunklets over FIFO and symmetric AQM bottlenecks

Here we consider the impact of downstream or upstream

elastic TCP flows on DASH chunklets, and how AQMs can

help mitigate the adverse effects presence in traditional FIFO.

1) Combating downstream elastic flows: In scenarios where

DASH is competing with downstream elastic TCP flows, we

consider cases where both DASH and TCP flows have the

same base RTT (20ms – indicating both services originates

from local providers; 60ms – indicating services originating

from international providers). We also consider the case where

video streams are retrieved from local content servers (20ms

RTT) and compete with TCP flows originating from a farther

location (emulating users downloading files from overseas).

Figure 6 shows SA increases for all FIFO, PIE and FQ-

CoDel as N increases. Instability indices are generally low (<

0.02 in all cases). However, larger SA variations are present

in FIFO, leading to higher variations in retrieved RR, hence

a higher median instability index, indicating frequent and

significant RR switches. When N < 6, single queue PIE has

wider spread in both SA and RR than FQ-CoDel. Although

it has higher RR values, its instability index is also higher

than FQ-CoDel. FQ-CoDel has a wider spread when N > 6

possibly due to the increased probability of high overlapping

percentage as N increases. Both PIE and FQ-CoDel see higher

instability index at N > 6.

When both DASH flow and bulk TCP flows have the base

RTT of 60ms (Figure 7), we see a similar behaviour but with

a lower average SA due to the fact that AQMs emulates a

small effective buffer (less than the paths’ BDP on average),

causing DASH client to retrieve lower RRs. FQ-CoDel shows

lower instability index when N < 7.

On the other hand, when DASH flow originates from a

closer location (20ms RTT) than elastic TCP flows (60ms

RTT), its average SA increases. Comparing with Figure 6

when both DASH and elastic flows are competing from 20ms

RTT away, this scenario sees PIE allowing DASH to achieve

higher SA and relatively high RRs as N increases. Bulk

transfer flows are less aggressive and begin to cede capacity

as path RTT increases due to the small buffer size emulated

by AQMs. There tend to be no significant SA increase as

N increases because all chunklets are served in a single

queue, and there is no FQ-induced AR multiplication effect

as observed in FQ-CoDel.

2) Protecting chunklets’ ACKs in congested uplinks: Since

DASH’s transmission is regulated by its ACKs, hence protect-

ing upstream ACK streams in scenarios where the uplink is

congested will indirectly allow DASH to achieve better ARs.

We evaluate this scenario by generating four upstream TCP

flows to compete with DASH chunklet flows. Figure 9 shows

FIFO performs the worst with ~0.1Mbps SA and selecting very

low RRs despite having zero instability index (as discussed

in Section III). This is because DASH’s ACK streams are

incapacitated by the aggressive TCP flows, hence unable to

regulate downstream DASH flows. By applying PIE and FQ-

CoDel in the upstream direction allows DASH to achieve much

higher SA, because both schemes controls queuing delays by

inducing packet losses on the elastic flows, signaling their

sources to backoff and reduce their sending rate. This then

allows low-rate ACK streams to traverse the upstream bottle-

neck and regulate DASH adequately. Our results show that

chunkleting is not ideal when competing with upstream flows.

In both AQM cases, SA trends downwards as N increases

and stablise around N = 6. In the presence of chunklets,

FQ-CoDel results show better RRs values and less spreading

(low instability index) than PIE. The flow protection and

capacity sharing ability of FQ-CoDel in the upstream assists in

ensuring chunklets’ ACKs streams are protected so that DASH

transmission can occur in a timely fashion.

C. Chunklets over asymmetric AQM bottlenecks

As AQMs gradually replaces FIFO queues in ISP/consumer

grade equipment, there may well exists scenarios with “asym-

metric bottlenecks” – where one end of the bottleneck imple-

ments AQM while the other still uses FIFO. This will result

in interesting implications on DASH flows when competing

with elastic traffic. We evaluate these potential scenarios by

applying AQMs or 100-packet FIFO at either the upstream or

downstream bottleneck, along a 12/1Mbps, 20ms RTT network

Authors’ copy. To appear in the 26th International Conference on Computer Communications and Networks (ICCCN 2017)

July 31 - August 3, 2017. See notice on the first page.
6

S
m

o
o

th
e

d
 A

R
 (

M
b

p
s
)

chunklets (N)
FIFO PIE FQ−CoDel

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0

5

10

15

Fig. 5. Smoothed AR vs N for FIFO, PIE and FQ-CoDel @ {25/5Mbps, 20ms RTT} path, fixed 3.5Mbps RR, 4 downstream elastic flows

S
m

o
o

th
e

d
 A

R
 (

M
b

p
s
)

chunklets (N)
FIFO PIE FQ−CoDel

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

0

0�5

1

1�5

2

2�5

3

In
s
ta

b
ili

ty
 i
n
d
e
x
��
�
�
��
�

R
R

 (
M

b
p
s
)

chunklets (N)
FIFO PIE FQ−CoDel

Max available RR

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12 median instability index

Fig. 6. Smoothed AR, RR and instability index vs N for FIFO, PIE and FQ-CoDel @ {12/1Mbps, 20ms RTT} path, 4 downstream elastic flows

S
m

o
o

th
e

d
 A

R
 (

M
b

p
s
)

PIE FQ−CoDel
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

4

6

8

�

�

FKXQNOHWV��1�

0

1

2

3

4

In
s
ta

b
ili

ty
 i
n

d
e

x
��
�
�
��
�

R
R

 (
M

b
p

s
)

3,()4�&R'HO

Max available RR

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

4

6

8 median instability index

�

�

FKXQNOHWV��1�

Fig. 7. Smoothed AR, RR and instability index vs N for PIE and FQ-CoDel
@ {12/1Mbps, 60ms RTT} path, 4 downstream elastic flows

path. Competing elastic flows are generated in the direction

where AQMs are applied.

1) Downstream AQM: Figure 10 shows that both PIE and

FQ-CoDel see the usual improvements when DASH chunklet

flows increases. FQ-CoDel performs better than PIE as it

manage to achieve higher SA when as N increases and it has

lower RR instability index than PIE. Since FIFO only manages

low-rate ACK streams in the upstream direction of all flows

at a decent rate (1Mbps), it is not detrimental to the DASH

chunklet flows.

Our experiment results validate the value of having AQMs

in at downstream bottleneck (most likely ISP last-mile) to

improve inter-flow fairness in the downstream direction as

S
m

o
o

th
e

d
 A

R
 (

M
b

p
s
)

PIE FQ−CoDel
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

4

6

8

�

�

FKXQNOHWV��1�

0

0�5

1

1�5

2

2�5

In
s
ta

b
ili

ty
 i
n

d
e

x
��
�
�
��
�

R
R

 (
M

b
p

s
)

3,()4�&R'HO

Max available RR

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

4

6

8 median instability index

�

�

FKXQNOHWV��1�

Fig. 8. Smoothed AR, RR and instability index vs N for PIE and FQ-CoDel
– 12/1Mbps, DASH @ 20ms RTT, 4 downstream elastic flows @ 60ms RTT

majority of home users are pulling/downloading content into

the home; and most users are more inclined to continue using

their current home gateways.

2) Upstream AQM: DASH (on top of TCP) performance

heavily relies on the timely arrival of ACK packets. We

explore the impact of chunkleting over AQMs when DASH

ACKs are competing with upstream elastic flows in the same

direction. Figure 11 shows a similar SA distribution curve to

Figure 9. Although chunkleting seems to reduce the SA, FQ-

CoDel provides significant advantages when it is applied to

isolate low-rate DASH ACK streams from the competing TCP

flows’ aggressive data streams and share the limited upstream

capacity equally. By protecting DASH’s ACK streams from the

Authors’ copy. To appear in the 26th International Conference on Computer Communications and Networks (ICCCN 2017)

July 31 - August 3, 2017. See notice on the first page.
7

S
m

o
o

th
e

d
 A

R
 (

M
b

p
s
)

chunklets (N)
FIFO PIE FQ−CoDel

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12

0

1

2

3

4

5

6

In
s
ta

b
ili

ty
 i
n
d
e
x
��
�
�
��
�

R
R

 (
M

b
p
s
)

chunklets (N)
FIFO PIE FQ−CoDel

Max available RR

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10

12 median instability index

Fig. 9. Smoothed AR, RR and instability index vs N for FIFO, PIE and FQ-CoDel @ {12/1Mbps, 20ms RTT} path, 4 upstream elastic flows

S
m

o
o

th
e

d
 A

R
 (

M
b

p
s
)

PIE FQ−CoDel

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

4

6

8

FKXQNOHWV��1�

�

�

0

0�5

�

1�5

2

In
s
ta

b
ili

ty
 i
n

d
e

x
��
�
�
��
�

R
R

 (
M

b
p

s
)

chunklets (N)
3,()4�&R'HO

Max available RR

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8 median instability index

Fig. 10. Smoothed AR, RR and instability index vs N for PIE, FQ-CoDel @
{12/1Mbps, 20ms RTT} path, downstream AQM, 4 downstream elastic flows

harm of TCP flows, FQ-CoDel enables DASH streams to be

regulated favourably, hence achieving maximum RRs and zero

instability index, indicating an ideal QoE where the maximum

video quality is retrieved throughout a video streaming session.

S
m

o
o

th
e

d
 A

R
 (

M
b

p
s
)

PIE FQ−CoDel

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

4

6

8

10

12

�

�

FKXQNOHWV��1�

0

1

2

3

4

5

6

In
s
ta

b
ili

ty
 i
n

d
e

x
��
�
�
��
�

R
R

 (
M

b
p

s
)

chunklets (N)
3,()4�&R'HO

Max available RR

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8 median instability index

Fig. 11. Smoothed AR, RR and instability index vs N for PIE and FQ-CoDel
@ {12/1Mbps, 20ms RTT} path, upstream AQM, 4 upstream elastic flows

V. OPEN ISSUES AND FUTURE WORK

A number of open issues and future work items emerge

from our experimental evaluation of chunklets for improved

retrieval of DASH content over AQM-enabled gateways.

As noted in Section IV-A, the AR multiplier effect depends

on a number of factors. As we increase N (the number of

chunklets per chunk) we have more parallel TCP connections

(potentially increasing the overall share of a bottleneck’s

capacity) but smaller chunklets (meaning more overhead, such

as HTTP headers, per byte of content transferred). And the

share of bottleneck bandwidth depends on the degree of

overlap between chunklets of a given chunk – we see lower

AR multiplier effect if chunklets only partially overlap in time.

Exploring the optimal trade-off between N, overheads and

chunklet overlap in time is a complex piece of future work.

A DASH client learns the byte ranges for video chunks at

different RR levels from the MPD. Hence, a safety threshold

(in terms of upper bound for N or minimum chunklet size) can

be pre-calculated to ensure that chunklets are not too small so

as to become inefficient. Future work will involve developing

an analytical model that predicts the AR multiplier effect

given a specific content type (chunk size distributions vary

with content/genres) and chunklet overlapping probabilities

to derive an optimal N. We envisage the native integration

of chunklets into DASH clients, which will then allow for

chunklet state information to be fed into ABRs, providing

another dimension for rate adaptation. A chunklet-aware client

can couple per-chunklet ARs with throughput/buffer-based

feedback signals and use an adaptive chunkleting mechanism

– intelligently varying N on-the-fly, so that chunklets can be

efficient yet inter-flow friendly when sharing the bottleneck.

Since the AR multiplier gain heavily depends on the degree

of chunklet overlapping, it is crucial that the HTTP server

serves chunklets concurrently when responding to simulta-

neous requests. Serialisation of chunklets will result in no

performance gain. The server will also need to keep the

TCP connections alive throughout the content playback du-

ration to avoid unnecessary costs (such as TCP connection

setup/teardown overhead, time taken for congestion window

to grow in Slow Start mode). Server-side measurements and

Authors’ copy. To appear in the 26th International Conference on Computer Communications and Networks (ICCCN 2017)

July 31 - August 3, 2017. See notice on the first page.
8

optimisation techniques can be explored as part of future work.

Other future work include a comparison study of chunklets

(intra-chunk) and inter-chunk techniques, performance evalu-

ation of single/multi-DASH scenarios with a more compre-

hensive set of QoE metrics, the effect of chunklets on other

competing traffic types (such as latency-sensitive applications),

and how adaptive chunkleting clients might detect bottleneck

type (FIFO or AQM) and adapt N in order to minimise induced

queuing delay spikes (particularly through FIFO bottlenecks).

VI. CONCLUSIONS

With the surge of online streaming services adopting DASH-

like technologies and modern AQMs being progressively

rolled out in ISP equipment and consumer grade devices, we

have identified a potential technique for optimising DASH

performance over AQM-enabled gateways from the client-

end – which we call chunklets. Chunklets use parallel TCP

connections to perform concurrent intra-chunk video retrieval,

leveraging the propensity of AQMs to improve inter-flow fair-

ness and capacity sharing. When competing with downstream

elastic TCP flows, we showed that chunklets can provide better

performance over AQMs than regular DASH over FIFO or

AQMs. We demonstrated the significant benefits of using FQ-

CoDel when DASH chunk(lets) ACK streams are competing

with aggressive upstream TCP flows for limited capacity. The

FlowQueue scheduler protects DASH’s ACKs, hence enabling

DASH transmission to occur in a timely manner. We also

explored asymmetric-AQM scenarios and showed the merits

of upgrading to AQMs at either the ISP-end or home gateways.

ACKNOWLEDGEMENTS

This work was enabled in part by PhD stipend support from

Netflix, Inc.

REFERENCES

[1] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
Queue, vol. 9, no. 11, pp. 40:40–40:54, Nov. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2063166.2071893

[2] R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem,” RFC 8033, Internet Engineering Task Force,
Feb. 2017. [Online]. Available: https://tools.ietf.org/html/rfc8033

[3] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled
Delay Active Queue Management,” IETF Draft, December 2016.
[Online]. Available: https://tools.ietf.org/html/draft-ietf-aqm-codel-06

[4] T. Høeiland-Jøergensen, P. McKenney, D. Taht, J. Gettys, and
E. Dumazet, “FlowQueue-Codel,” IETF Draft, draft-ietf-aqm-fq-
codel-06, March 2016. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-aqm-fq-codel-06

[5] G. White and R. Pan, “Active Queue Management (AQM) Based on
Proportional Integral Controller Enhanced PIE) for Data-Over-Cable
Service Interface Specifications (DOCSIS) Cable Modems,” RFC 8034,
Internet Engineering Task Force, Feb. 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8034

[6] Sandvine, “Sandvine Global Internet Phenomena
Report,” 2016. [Online]. Available: https://www.
sandvine.com/downloads/general/global-internet-phenomena/2016/
global-internet-phenomena-report-latin-america-and-north-america.pdf

[7] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP: Standards
and Design Principles,” in Proceedings of the 2nd Annual ACM Confer-

ence on Multimedia Systems, ser. MMSys ’11, 2011, pp. 133–144.
[8] M. Allman, V. Paxson, and E. Blanton, “TCP Congestion Control,”

RFC 5681, Internet Engineering Task Force, Sep. 2009. [Online].
Available: https://tools.ietf.org/html/rfc5681

[9] G. Tian and Y. Liu, “Towards Agile and Smooth Video Adaptation in
Dynamic HTTP Streaming,” in Proceedings of the 8th International
Conference on Emerging Networking Experiments and Technologies, ser.
CoNEXT ’12, 2012, pp. 109–120.

[10] Linux, “Linux tc-pie man page: PIE - Proportional Integral controller-
Enhanced AQM algorithm,” January 2014. [Online]. Available:
http://man7.org/linux/man-pages/man8/tc-pie.8.html

[11] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “PIE: A Lightweight Control Scheme
To Address the Bufferbloat Problem,” IETF Draft, draft-pan-aqm-
pie-02, September 2014. [Online]. Available: https://tools.ietf.org/html/
draft-pan-aqm-pie-02

[12] J. Kua, G. Armitage, and P. Branch, “The Impact of Active Queue
Management on DASH-Based Content Delivery,” in 2016 IEEE 41st

Conference on Local Computer Networks (LCN), Nov 2016, pp.
121–128. [Online]. Available: https://doi.org/10.1109/LCN.2016.24

[13] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari,
“Confused, Timid, and Unstable: Picking a Video Streaming Rate
is Hard,” in Proceedings of the 2012 ACM Conference on Internet

Measurement Conference, ser. IMC ’12, 2012, pp. 225–238.
[14] Globus, “GridFTP - Globus Toolkit,” January 2017. [Online]. Available:

http://toolkit.globus.org/toolkit/docs/latest-stable/gridftp/
[15] R. Kuschnig, I. Kofler, and H. Hellwagner, “Improving Internet

Video Streaming Performance by Parallel TCP-Based Request-Response
Streams,” in 2010 7th IEEE Consumer Communications and Networking

Conference, Jan 2010, pp. 1–5.
[16] C. Liu, I. Bouazizi, and M. Gabbouj, “Parallel Adaptive HTTP Media

Streaming,” in 2011 Proceedings of 20th International Conference on

Computer Communications and Networks (ICCCN), July 2011, pp. 1–6.
[17] S. Lederer, C. Mueller, B. Rainer, C. Timmerer, and H. Hellwagner,

“Adaptive streaming over Content Centric Networks in mobile networks
using multiple links,” in 2013 IEEE International Conference on Com-

munications Workshops (ICC), June 2013, pp. 677–681.
[18] R. Major and M. Hurst, “Apparatus, system, and method for adaptive-

rate shifting of streaming content,” Oct. 21 2014, uS Patent 8,868,772.
[Online]. Available: https://www.google.com/patents/US8868772

[19] S. Smanchat, K. Sangkul, and J. Y. Tham, “Enabling Parallel Streaming
of Multiple Video Sections by Segment Scheduling,” in Proceedings of
the 13th International Conference on Advances in Mobile Computing

and Multimedia, ser. MoMM 2015, 2015, pp. 221–226.
[20] W. Law, “Multiple HTTP connections per video segment,” https://github.

com/Dash-Industry-Forum/dash.js/issues/1029, 2016.
[21] M. Ansari and M. Ghaderi, “Parallel HTTP for Video Streaming in

Wireless Networks,” in 2016 IEEE 24th International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), Sept 2016, pp. 337–342.

[22] S. Zander and G. Armitage, “TEACUP v1.0 - A System for Automated
TCP Testbed Experiments,” http://caia.swin.edu.au/reports/150529A/
CAIA-TR-150529A.pdf, Melbourne, Australia, 29 May 2015.

[23] R. Al-Saadi and G. Armitage, “Dummynet AQM v0.2
– CoDel, FQ-CoDel, PIE and FQ-PIE for FreeBSD’s
ipfw/dummynet framework,” Centre for Advanced Internet
Architectures, Swinburne University of Technology, Melbourne,
Australia, Tech. Rep. 160418A, 18 April 2016. [Online]. Available:
http://caia.swin.edu.au/reports/160418A/CAIA-TR-160418A.pdf

[24] S. Lederer, C. Müller, and C. Timmerer, “Dynamic Adaptive Streaming
over HTTP Dataset,” in Proceedings of the 3rd Multimedia Systems

Conference, ser. MMSys ’12, 2012, pp. 89–94.
[25] proxy2, “HTTP/HTTPS proxy in a single python script,” 2016.

[Online]. Available: https://github.com/inaz2/proxy2
[26] S. Zander and G. Armitage, “Minimally-Intrusive Frequent Round Trip

Time Measurements Using Synthetic Packet Pairs,” in The 38th IEEE

Conference on Local Computer Networks (LCN 2013), October 2013.
[27] R. K. Mok, E. W. Chan, X. Luo, and R. K. Chang, “Inferring the QoE of

HTTP Video Streaming from User-viewing Activities,” in Proceedings

of the First ACM SIGCOMM Workshop on Measurements Up the Stack,
ser. W-MUST ’11, 2011, pp. 31–36.

[28] N. Cranley, P. Perry, and L. Murphy, “User Perception of Adapting Video
Quality,” International Journal of Human-Computer Studies, vol. 64,
no. 8, pp. 637–647, Aug. 2006.

[29] J. Jiang, V. Sekar, and H. Zhang, “Improving Fairness, Efficiency, and
Stability in HTTP-Based Adaptive Video Streaming With FESTIVE,”
IEEE/ACM Trans. Netw., vol. 22, no. 1, pp. 326–340, Feb. 2014.

Authors’ copy. To appear in the 26th International Conference on Computer Communications and Networks (ICCCN 2017)

July 31 - August 3, 2017. See notice on the first page.
9

