
© IFIP, 2017. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use. Not for
redistribution. The definitive version will be published in IFIP NETWORKING 2017 proceedings.

Alternative Backoff: Achieving Low Latency and
High Throughput with ECN and AQM

Naeem Khademi∗, Grenville Armitage†, Michael Welzl∗, Sebastian Zander§

Gorry Fairhurst‡ and David Ros¶

Abstract—A number of recently proposed Active Queue Man-
agement (AQM) mechanisms instantiate shallow buffers with
burst tolerance to minimise the time that packets spend enqueued
at a bottleneck. However, shallow buffering causes noticeable
TCP performance degradation as a path’s underlying round trip
time (RTT) heads above typical intra-country levels. Using less-
aggressive multiplicative backoffs in TCP can compensate for
shallow bottleneck buffering. AQM mechanisms may either drop
packets or mark them using Explicit Congestion Notification
(ECN), depending on whether the sender marked packets as
ECN-capable. While a drop may therefore stem from any type
of queue, an ECN-mark indicates that an AQM mechanism has
done its job, and therefore the queue is likely to be shallow. We
propose ABE: “Alternative Backoff with ECN”, which consists
of enabling ECN and letting individual TCP senders back off
less aggressively in reaction to ECN-marks from AQM-enabled
bottlenecks. Using controlled testbed experiments with standard
NewReno and CUBIC flows, we show significant performance
gains in lightly-multiplexed scenarios, without losing the delay-
reduction benefits of deploying AQM. ABE is a sender-side-only
modification that can be deployed across networks incrementally
(requiring no flag-day) and offers a compelling reason to deploy
and enable ECN across the Internet.

Index Terms—ECN, low latency, AQM, TCP, congestion con-
trol.

I. INTRODUCTION

Recent years have seen increasing mainstream awareness
of how critical low latency (delay) is to today’s Internet and
to end users’ quality of experience. The delay experienced
by any given packet is heavily influenced by routing choices
(distance), link speeds (serialisation) and queuing (buffering at
bottlenecks during periods of congestion). Increasing network
speeds have reduced the relative contribution of serialisation,
and therefore placed more focus on the size and management
of bottleneck buffers [1].

A key influence on end user experience is the way bottle-
neck buffering interacts with capacity estimation techniques
of common transport protocols. The Internet’s reliance on
statistical multiplexing requires buffering to absorb transient

∗Email: {naeemk,michawe}@ifi.uio.no, Networks and Distributed Systems
Group, Department of Informatics, University of Oslo, Norway
†Email: garmitage@swin.edu.au, School of Software and Electrical Engi-

neering, Swinburne University of Technology, Australia
§Email: s.zander@murdoch.edu.au, School of Engineering and Information

Technology, Murdoch University, Australia
‡Email: gorry@erg.abdn.ac.uk, School of Engineering, University of Ab-

erdeen, United Kingdom
¶Email: dros@simula.no, Simula Research Laboratory, Norway

periods of congestion. Loss-based TCP algorithms will try to
fill a bottleneck’s available buffer space before backing off
after packet loss (congestion signal). When available buffering
is significantly in excess of requirements the resulting queuing
delay can far outweigh any delay contributed by distance [2].

Two complementary solutions to the above issue have
emerged—Active Queue Management (AQM) [3] and Explicit
Congestion Notification (ECN) [4]. AQM provides earlier
feedback about the onset of congestion, and thus reduces
buffer filling during congestion. ECN adds new information
to packets in transit allowing ECN-capable AQM bottlenecks
to deliver congestion feedback earlier than is possible using
packet loss, and avoiding the cost of dropping packets to signal
congestion [5].

Unfortunately, modern AQM schemes interact badly with
the traditional TCP response to congestion notification. Stan-
dard TCP halves its window (a multiplicative decrease factor,
β, of 0.5) in response to packet loss or ECN. So a common
rule-of-thumb is to allocate bottleneck buffering at least equiv-
alent to a path’s intrinsic ‘bandwidth delay product’ (BDP)1

to avoid under-utilisation. Yet recent AQM schemes, such as
Controlled Delay (CoDel) [6], [7] and Proportional-Integral
controller Enhanced (PIE) [8], [9], effectively instantiate a
shallow bottleneck buffer with burst tolerance. So TCP perfor-
mance suffers once a path’s BDP exceeds the bottleneck AQM
scheme’s effective buffer size, whether congestion is signalled
by packet loss or ECN [10], [11].

A. Modifying TCP sender response to ECN marks

We propose and evaluate Alternative Backoff with ECN
(ABE), a simple sender-side TCP enhancement that enables
low latency and high throughput through AQM-managed bot-
tlenecks even for high-BDP paths, thus providing an incentive
to deploy ECN as an alternative to loss-based congestion
signaling. ABE can be summarised as follows:

• Upon packet loss, a TCP sender reduces its congestion
window (cwnd) as usual (e.g., NewReno uses β = 0.5 to
reduce cwnd by 50%).

• Upon receipt of an ECN mark, a TCP sender reduces
cwnd by less than the response for loss (uses a larger β).

ABE is based on the intuition that meaningful ECN marks
are generated by AQM schemes whose congestion indications
are proactively aimed at keeping buffer occupancy low. An

1Path’s intrinsic bandwidth is defined as the bandwidth at the bottleneck
link.

ABE sender thus compensates by backing off less, reducing
the likelihood of the shallow bottleneck buffer draining to
empty. Smaller backoffs will continue to occur as the AQM
continues to react, ensuring the traffic does not build a long
standing queue.

A similar idea was proposed by Kwon and Fahmy in
2002 [12], who coupled a larger β with a smaller additive
increase factor in order to be TCP-friendly under all cir-
cumstances. Their evaluation also assumed the bottleneck’s
AQM to be RED [13], which is not necessarily deployed
with a shallow buffer. The concept of TCP senders reacting
differently to loss and ECN marks was also noted by Ott in
2005 [14]. In more recent years it has become common to relax
the requirement of strict TCP-friendliness [15]. Consequently,
ABE relies solely on using a larger β when reacting to ECN
marks generated by modern AQMs such as PIE and CoDel.

ABE may be deployed incrementally – an ABE-enabled
TCP sender exhibits completely standard TCP behaviour if
either the destination or the path do not support ECN. If
an ABE sender’s flow traverses a bottleneck whose AQM
instantiates an unexpectedly deep queue instead, then either
packet losses or successive ECN marks will ensure the sender
continues to back off appropriately.

This paper is a much improved presentation of the ABE idea
first outlined in a 2015 technical report [16] which is also now
being considered for IETF standardization [17], [18].

B. The past and future role of ECN

In 2001 RFC 3168 [4] defined ECN as a simple marking
method to replace packet drops as a congestion indication. Al-
though widely implemented, ECN is still not widely used [19],
in part due to early experiences of failure of ECN-enabled TCP
connections to 8% of web servers tested in 2000 [20]. This
improved to < 1% of web servers tested in 2004 [21], yet
in 2011 there were still a significant number of paths whose
middleboxes mangled the ECN field in the IP header [22].

By 2014, the majority of the top million web servers offered
ECN negotiation (56% for IPv4 and 65% for IPv6) [19]. Wide-
spread client-side support for ECN-fallback means only 0.5%
of websites suffer additional connection setup latency. ECN
is now supported in the Linux and FreeBSD implementations
of CoDel and PIE (turned on by default in FreeBSD), and is
recommended for Internet deployment [23].

In light of increased interest in AQM for managing latency,
ABE provides a new incentive to also deploy and enable ECN
more widely.

C. Paper structure

The rest of this paper is structured as follows. We mo-
tivate ABE in Section II, showing the relationship between
TCP backoff, bottleneck buffer size and path BDP, and
demonstrating how TCP degrades over CoDel and PIE bot-
tlenecks at plausible domestic and international round-trip
times (RTTs). ABE is introduced in Section III. Section IV
evaluates ABE using controlled testbed experiments with
CUBIC and NewReno TCP. Related work and future work are

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

 10 20 30 40 50 60 70 80 90 100

BDP

2/3 BDP

3/7 BDP

1/4 BDP

1/9 BDP

T
hr

ou
gh

pu
t (

M
bp

s)

Buffer Size (Packets)

β=0.5
β=0.6
β=0.7
β=0.8
β=0.9

Fig. 1: Throughput of a single NewReno flow, with C =
10 Mbps, RTT = 100 ms (model and simulation).

considered in Sections V and VI respectively. We conclude in
Section VII.

II. BACKGROUND

The choice of multiplicative decrease factor β = 0.5
for standard TCP has been noted in [24] as a heuristic,
conservative choice. TCP’s Additive Increase, Multiplicative
Decrease (AIMD) control of cwnd would also exhibit useful
convergence properties with other values of β. To better un-
derstand the implications of AQMs enforcing small queues on
long-RTT paths, we revisit how TCP performance is influenced
by β, path characteristics and bottleneck queue size.

A. TCP backoff, path characteristics and link utilisation

Consider a single long-lived TCP flow traversing a path
with round trip time of RTTpath, bottleneck link capacity C,
and DropTail buffer of size b. Assume the TCP flow is in
congestion avoidance mode, multiplicative decrease factor is
β ∈ (0, 1) and cwnd is not limited by the TCP receiver’s
advertised window (rwnd). Denote utilisation as U .

To achieve U = 1 the number of bytes in flight must not
drop below the path’s intrinsic BDP, δ = C×RTTpath. Given
cwndmax as the number of unacknowledged bytes in flight
just prior to backoff, it must be simultaneously true that β ∗
cwndmax ≥ δ and cwndmax = (b+ δ). Solving for b gives:

b ≥ δ 1− β
β

(1)

With β = 0.5, (1) yields the well-known b ≥ δ rule-of-thumb
for buffer sizing, with b = δ being the sweet spot and larger
b merely resulting in higher queuing delays when the longer
queue is filled. Rewriting equation (1) as

β ≥ δ

b+ δ
, (2)

makes clear that for given path δ, a larger β is required for (2)
to hold (i.e., sustain U = 1) when buffer b shrinks below δ.
To give this some concrete representation, Fig. 1 illustrates2

how increasing β allows the throughput of a TCP flow running

2Using ns-2.35 simulation results and an analytical model described in [16].

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●●
●

●

●

●

●●

●

●

●

●

●●●

●●

●
●

●

●

●
●

●

●

●

●

●

T
hr

ou
gh

pu
t (

M
bp

s) ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●
●●
●

●

●

●

●●

●

●

●

●

●●●

●●

●
●

●

●

●
●

●

●

●

●

●

20 40 80 160 240RTT (ms)

10

12

14

16

18

20

No_ECN ECN

(a) CoDel

●
●

●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●●
●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●

T
hr

ou
gh

pu
t (

M
bp

s)

●
●

●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●●
●●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●
●●●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●
●

20 40 80 160 240RTT (ms)

10

12

14

16

18

20

No_ECN ECN

(b) PIE

Fig. 2: Experiments confirm CUBIC TCP performance through
CoDel and PIE bottlenecks degrades as RTTpath increases.

over a 100 ms path with 10 Mbps bottleneck to remain high
even as b becomes smaller and smaller fractions of δ.

B. Using AQM with a large path RTT

Although CoDel and PIE differ in their specific details, in
broad terms they both aim to directly limit the sojourn times
of packets in a bottleneck queue, and hence limit the queuing
delays experienced by traffic passing through the bottleneck.
Unfortunately, this is also known to reduce TCP throughput
when RTT is large [25], [26]. Fig. 2 uses results from a
real-life experiment to illustrate how throughput drops off
as RTTpath increases from domestic (20 ms) to international
(240 ms) levels when a single CUBIC TCP flow traverses
a 20 Mbps bottleneck for 90 seconds using either CoDel or
PIE (at default settings) for queue management, and with or
without ECN.3 It is clear that ECN on its own provides limited
assistance; simply replacing packet drops by packet marking
does not mitigate the consequences of effectively small buffers.

Fig. 2 is easy to explain. For a given bottleneck rate C, the
queuing delay targets of CoDel and PIE roughly equate to a
particular buffer b. As RTTpath rises, b becomes increasingly
shallow relative to the path’s δ, eventually violating (1) and
resulting in utilisation dropping below 100%.

At this point both intuition and (2) suggest we should
increase β to offset the degree to which δ is exceeding the
effective b of a CoDel or PIE bottleneck. However, the TCP
sender should only apply an increased β when it is (or is likely
to be) dealing with a short bottleneck queue somewhere inside
the network path. We want to avoid the higher standing queues
(and resulting queuing delays) that result from increasing β on
connections through conventionally sized (b ≥ δ) bottlenecks.

III. ALTERNATIVE BACKOFF WITH ECN (ABE)

ABE is based on the following observation: The negligible
deployment to date of old style AQM such as RED [23]
means that future ECN marks are likely generated by modern
AQM mechanisms whose effective queues are quite shallow.
Consequently, ABE requires TCP senders to only use an
alternative, higher βecn > β when reacting to ECN marks
on ECN-enabled connections, and use their original β when

3CUBIC’s non-traditional use of β = 0.7 makes Fig. 2 a conservative
illustration. The throughput loss is worse for NewReno flows (β = 0.5).
By contrast, over the same RTTpath and using conventional DropTail
queue management, CUBIC achieves 100% capacity (albeit with significant
additional queuing delay).

reacting to a packet loss. ABE alters RFC 3168’s requirement
that TCP senders react to ECN marks as they react to packet
loss [4]. A sender’s additive increase is unchanged.

Section II motivated the use of ABE during a TCP connec-
tion’s congestion avoidance phase on connections over high
BDP paths. However, two different questions now present
themselves: (a) what happens when using βecn > β if the
bottleneck’s effective queue is not shallow relative to the path’s
δ, and (b) what impact might ABE have during slow-start?

Given that AQMs are deployed to keep latencies down, an
ECN marking bottleneck is unlikely to have a large effective b.
But if the path has a low δ (close to the bottleneck’s effective
b), using βecn is still safe – the connection will simply require
a few more successive backoffs to reach where it would have
been if not using ABE (or ultimately react to packet loss).

ABE can also benefit a TCP connection’s transition from
the slow-start phase (SS) to the congestion avoidance phase
(CA). Conventionally, SS involves starting cwnd at an initial
value (e.g. 10 MSS in some popular stacks), doubling cwnd
every RTT while probing for path capacity, then entering CA
after the first congestion indication (packet loss or mark) [4]
by doing a backoff with β = 0.5.4 This reverts cwnd back to
the last value that successfully sent a full window of data.

However, at the point of backoff cwnd has overshot a path’s
capacity by between one packet and almost an entire BDP.5

So while subsequently halving cwnd does reliably terminate
the overshoot within one RTT, connections may enter CA with
cwnd significantly below path capacity, requiring many RTTs
for the flow to regain lost utilisation.

An ABE sender may mitigate this by using its higher βecn >
β for the backoff when transitioning from SS to CA as a result
of an ECN mark. Fig. 3 depicts the issue. The solid lines
each represent one NewReno flow using using βecn = 0.5,
with RTTpath = {160, 240}ms respectively. The RTTpath =
240ms flow suffers under-utilisation when a small cwnd after
SS overshoot results in a long period of slow growth in CA.
The RTTpath = 160ms flow is luckier after SS, but then
a second congestion event leads to wasted capacity in CA.
Dashed lines represent the same flows using βecn = 0.9. In
both cases, the less aggressive backoff results in cwnd tending
towards BDP soon after exiting SS, better path utilisation and
reduced completion times for the flow.6

The issue is of particular interest when handling short
flows, such as common web traffic. Recent trends [28] show
web-related short flows are getting longer, increasing the
probability that they terminate not long after entering CA with
a potentially suboptimal cwnd. All experiments in this paper
use the higher βecn for SS to CA transition.

4True for both NewReno and CUBIC (even with modern CUBIC including
Hystart [27] to minimise SS overshoot).

5Depending on how a certain multiple of TCP’s initial window is aligned
with the path BDP and the queue length.

6On the down side, a large overshoot results in cwnd being reduced in
multiple steps, which increases the latency over multiple RTTs after slow-
start (however, the number of these RTTs is bounded by logβecn (0.5)).

0 2 4 6 8 10 12

0
10

0
20

0
30

0
40

0

Time (s)

cw
nd

 (
pa

ck
et

s)

RTT, βecn

160ms,0.5
240ms,0.5
160ms,0.9
240ms,0.9

160ms X 20Mbps capacity

240ms X 20Mbps capacity

Fig. 3: The effect of overshoot at the end of slow-start for
βecn = {0.5, 0.9}, with C = 20 Mbps (test bed results).

IV. EVALUATION

Our evaluation involves controlled, testbed experiments7

whose conditions are described further in [16].

A. AQM algorithms and parameters

Our experiments considered ABE-enabled flows travers-
ing PIE and CoDel bottlenecks. We deferred testing with
FQ CoDel [30] as it is known to trigger CoDel-like under-
utilisation on paths with higher RTTs [31], and we wished
to explore interactions between ABE and non-ABE flows in
single-queue AQM contexts.

We used Linux 3.17.4 implementations of PIE8 and CoDel
with their default parameters. CoDel’s interval and target were
set to 100 ms and 5 ms. For PIE, target and tupdate were set to
20 ms and 30 ms, alpha was 0.125, beta was 1.25, max burst
(used to allow bursts of a given size to pass) was set to 100 ms
and bytemode was turned off. Maximum queue length was set
to the Linux default of 1000 packets in all scenarios.

In Linux kernel 3.17.4, PIE drops packets on ECN-
enabled flows when PIE’s drop/mark probability exceeds 10%.
Although this ostensibly provides a defense against non-
responsive ECN-enabled flows, we disabled it for all our
experiments due to its detrimental impact on ECN-enabled
flows that are responsive to congestion signals.

We patched our testbed’s FreeBSD 10.1 and Linux (open-
SUSE 13.2) hosts to generate ABE-enabled NewReno and
CUBIC flows respectively [33].

B. Latency vs. throughput for a NewReno or CUBIC flow

As βecn increases above β we would expect to see both
improved throughput and increased queuing delays. But since
ABE presumes ECN marks indicate the presence of a bot-
tleneck using modern AQM, traffic is already being marked
at low buffering thresholds, limiting the latency increase
experienced by ECN-enabled traffic using βecn > β.

7Using TEACUP [29], an experiment automation suite for TCP that is
driving a physical testbed with a dumbbell topology using FreeBSD and Linux
hosts, and a Linux-based software router.

8Note the Linux PIE implementation between kernel 3.14 to 4.5 is based
on the early [32] rather than later [9], with no major change during this pe-
riod, http://lxr.free-electrons.com/diff/net/sched/sch pie.c?v=3.14;diffval=4.5;
diffvar=v.

0 50 100 150 200 250 300

0
50

10
0

RTT=100ms

B
yt

es
 D

ep
ar

te
d

βecn

0.6
0.7
0.75
0.8

0.85
0.9
0.95

Im
pr

ov
em

en
t o

ve
r

β e
cn

=
0.

5
(%

)

0 50 100 150 200 250 300

RTT=200ms

Time(s)
0 100 200 300 400 500 600

RTT=400ms

(a) CoDel

0 50 100 150 200 250 300

0
50

10
0

RTT=100ms

B
yt

es
 D

ep
ar

te
d

βecn

0.6
0.7
0.75
0.8

0.85
0.9
0.95

Im
pr

ov
em

en
t o

ve
r

β e
cn

=
0.

5
(%

)

0 50 100 150 200 250 300

RTT=200ms

Time(s)
0 100 200 300 400 500 600

RTT=400ms

(b) PIE

Fig. 4: Improvement over βecn = 0.5 in terms of bytes
received for a single NewReno flow; C = 10 Mbps.

Despite some applications (such as web browsers) com-
monly opening multiple connections (flows), we focus our
current analysis on the single-flow scenario as (1) it is the
worst-case for throughput, and (2) the present trade-off is
mainly determined by long-lived connections [34].9

Using results from live testbed experiments, Fig. 4 and
Fig. 5 illustrate the latency vs throughput trade-off for a
single long-lived NewReno flow traversing CoDel or PIE
bottlenecks, for RTTpath = {100, 200, 400}ms and βecn =
{0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}.

Fig. 4 shows that for either AQM we see significant gains
in throughput (averaged over ten runs relative to throughput
achieved with β = 0.5) as βecn increases. The improvements
are particularly notable right after slow-start, and for long-
lived flows at larger RTTpath. For example, a long-lived flow
sees 24% (CoDel) and 23% (PIE) throughput improvement for
βecn = 0.8 when RTTpath = 400ms.

Fig. 5 shows CDFs of estimated queuing delay10 averaged
over ten runs for the scenarios of Fig. 4. CoDel’s deterministic
marking policy keeps queuing delay close to its 5 ms target for
all βecn. PIE also keeps delay low, with a more heavy-tailed
distribution due to the randomised and burst-tolerant nature of
PIE’s ECN marking [38].

With RTTpath = 100ms (where throughput gain is smallest
and the delay increase is largest), βecn = 0.95 sees CoDel and

9End-user experience is also likely to become more influenced by single-
flow performance as browsers shift to using HTTP/2 [35] or SPDY [36].

10Computed from the actual RTT measured using SPP [37] minus the sum
of constant path RTT configured plus 1 ms for overheads (short queue in the
ACK direction plus delays at sender/receiver).

0 2 4 6 8 10

0
20

40
60

80
10

0
RTT=100ms

C
D

F
 (

%
) βecn

0.5
0.6
0.7
0.75
0.8
0.85
0.9
0.95

C
D

F
(%

)

0 2 4 6 8 10

RTT=200ms

Queueing Delay (ms)
0 2 4 6 8 10

RTT=400ms

(a) CoDel

0 5 10 15 20 25 30 35

0
20

40
60

80
10

0

RTT=100ms

C
D

F
 (

%
) βecn

0.5
0.6
0.7
0.75
0.8
0.85
0.9
0.95

C
D

F
(%

)

0 5 10 15 20 25 30 35

RTT=200ms

Queueing Delay (ms)
0 5 10 15 20 25 30 35

RTT=400ms

(b) PIE

Fig. 5: CDF of estimated queuing delay for a single NewReno
flow; C = 10 Mbps.

PIE add 3 ms/2 ms and 20 ms/5 ms to the 50th/90th percentile
delay respectively (compared to βecn = 0.5). However, with
βecn = 0.85 the increase is only 1 ms/<2 ms (CoDel) and
15 ms/3 ms (PIE). For a NewReno flow, the range 0.7 ≤
βecn ≤ 0.85 appears to be a good trade-off between improved
throughput and increased latency.

Fig. 6 and Fig. 7 illustrate the latency vs throughput trade-
offs when the NewReno flow is replaced by a CUBIC flow.11

Throughput gains are evident, although smaller than Fig. 4
due to CUBIC’s already aggressive additive increase and
default β = 0.7. For example, when RTTpath = 400ms a
long-lived flow sees gains of 15% and 25% (CoDel) or 10%
and 15% (PIE) for βecn = {0.85, 0.95} respectively.

Fig. 7’s queuing delay distributions are similar to
NewReno’s in Fig. 5. With RTTpath = 100ms and βecn =
{0.85, 0.95} we see the increase in 50th/90th percentile delay
of 2.5 ms/<1 ms and 5 ms/<1 ms (CoDel) and 2.5 ms/<1 ms
and 5 ms/<1 ms (PIE) respectively relative to βecn = 0.7. For
a CUBIC flow, the range 0.85 ≤ βecn ≤ 0.95 seems a good
trade-off between improved throughput and increased latency.

Fig. 8 provides an alternative illustration of how increasing
βecn allows a NewReno flow to recover throughput otherwise
lost when running through a CoDel bottleneck, particularly for
higher RTTpath. Although not shown to save space, for each
RTTpath the median RTT was basically unaffected by βecn.

0 50 100 150 200 250 300

0
10

20
30

40

RTT=100ms

B
yt

es
 D

ep
ar

te
d

βecn

0.75
0.8
0.85

0.9
0.95

Im
pr

ov
em

en
t o

ve
r

β e
cn

=
0.

7
(%

)

0 50 100 150 200 250 300

RTT=200ms

Time(s)
0 50 100 150 200 250 300

RTT=400ms

(a) CoDel

0 50 100 150 200 250 300

0
10

20
30

40

RTT=100ms

B
yt

es
 D

ep
ar

te
d

βecn

0.75
0.8
0.85

0.9
0.95

Im
pr

ov
em

en
t o

ve
r

β e
cn

=
0.

7
(%

)

0 50 100 150 200 250 300

RTT=200ms

Time(s)
0 50 100 150 200 250 300

RTT=400ms

(b) PIE

Fig. 6: Improvement over βecn = 0.7 in terms of bytes
received for a single CUBIC flow; C = 10 Mbps.

C. Convergence between bulk transfers

We also used live testbed experiments to investigate how
βecn influences the time for similar flows to converge on a
fair rate allocation, with convergence measured using Jain’s
Fairness Index [39]. Flows were started one after the other,
with a delay of 30 seconds in between. When a new flow
started at time t = t0, for each existing flow i we measured
over time the cumulative number of bytes transferred xi(t),
from t0 onwards, and computed a running fairness index F (t)
as

F (t) =

(∑N
i=1 xi(t)

)2
N
∑N
i=1 xi(t)

2

where N is the total number of flows active at time t.
Convergence time T was defined as the time it took F (t)
to reach a threshold θ = 0.95.
Initial tests using N = {2, 4, 10} flows with equal RTTs
did not find any consistent improvement or disadvantage in
convergence times from changing βecn. Therefore we illustrate
the impact of βecn on fairness using experiments with N = 2
flows, bottleneck speeds C = {1, 5, 10, 20, 40, 100}Mbps,
RTTpath = {10, 20, 40, 60, 80, 160, 240, 320}ms, and differ-
ent values of βecn. For each of the 48 combinations of capacity
and RTT, we measured T using the default backoff factors
(β = 0.7 and β = 0.5 for CUBIC and NewReno respectively),
which we call Tβ , and compared it to T using a higher backoff
factor βecn > β, which we call Tβecn . The metric of interest is

11CUBIC’s fast convergence mode was turned off to provide conservative
results, as disabling fast convergence produced slightly worse improvements
for increased βecn.

0 2 4 6 8 10

0
20

40
60

80
10

0
RTT=100ms

C
D

F
 (

%
)

βecn

0.7
0.75
0.8
0.85
0.9
0.95

C
D

F
(%

)

0 2 4 6 8 10

RTT=200ms

Queueing Delay (ms)
0 2 4 6 8 10

RTT=400ms

(a) CoDel

0 5 10 15 20 25 30 35

0
20

40
60

80
10

0

RTT=100ms

C
D

F
 (

%
)

βecn

0.7
0.75
0.8
0.85
0.9
0.95

C
D

F
(%

)

0 5 10 15 20 25 30 35

RTT=200ms

Queueing Delay (ms)
0 5 10 15 20 25 30 35

RTT=400ms

(b) PIE

Fig. 7: CDF of estimated queuing delay for a single CUBIC
flow; C = 10 Mbps.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

T
hr

ou
gh

pu
t (

M
bp

s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

40
0.5

80
0.5

160
0.5

240
0.5

40
0.6

80
0.6

160
0.6

240
0.6

40
0.7

80
0.7

160
0.7

240
0.7

40
0.8

80
0.8

160
0.8

240
0.8

RTT (ms)
βecn

5

10

15

20

Fig. 8: Throughput improves with higher βecn, more so for
large RTTpath (NewReno flow over CoDel, C = 20 Mbps).

then the ratio of convergence times ρ = Tβecn/Tβ , e.g. ρ = 2
means convergence to fairness with βecn > β takes twice as
long as it does with βecn = β.

Figs. 9 and 10 show the CDF of ρ, obtained from 384
and 576 experiments, respectively. We also tested with βecn =
{0.55, 0.65} for NewReno and βecn = 0.95 for both NewReno
and CUBIC. Results were similar; we omit these lines for
clarity. All experiments ran long enough to ensure convergence
(F (t) = θ). The distribution of ρ has a long tail due to some
extreme outliers—long convergence times for the depicted
βecn values and very small ones for βecn = β. Some were one
“unlucky” flow always being affected by a congestion mark.
In other cases, using βecn = β saw slow-start ending at just
the right value, creating an outlier for all the βecn > β cases.

All βecn values can sometimes cause even faster conver-
gence than the default, but for CUBIC no value of βecn could
significantly improve it (generally, less than half of the cases
converged faster than the default case). This is somewhat

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
D

F

ρ

βecn 0.75
βecn 0.8

βecn 0.85
βecn 0.9

(a) CoDel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
D

F

ρ

βecn 0.75
βecn 0.8

βecn 0.85
βecn 0.9

(b) PIE

Fig. 9: Distribution of the ratio ρ of convergence times Tβecn

(where βecn > β) and Tβ (where βecn = β) with CUBIC.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
D

F

ρ

βecn 0.6
βecn 0.7

βecn 0.75
βecn 0.8

βecn 0.85
βecn 0.9

(a) CoDel

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

C
D

F

ρ

βecn 0.6
βecn 0.7

βecn 0.75
βecn 0.8

βecn 0.85
βecn 0.9

(b) PIE

Fig. 10: Distribution of the ratio ρ of convergence times Tβecn

(where βecn > β) and Tβ (where βecn = β) with NewReno.

different with NewReno, where at least with PIE all the plotted
values improve convergence in more than half of the cases,
with a particularly good result for βecn = 0.75.

Our results suggest that convergence time is not significantly
harmed by changing βecn since in most cases the median ρ is
close to, or smaller than, 1.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 vs 9 3 vs 7 5 vs 5 7 vs 3 9 vs 1

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 ra

tio

(E
C

N
 fl

ow
s

/ n
oE

C
N

 fl
ow

s)

noECN flows vs # ECN flows

βecn=0.7
βecn=0.75

βecn=0.8
βecn=0.85

βecn=0.9

Fig. 11: Ratio of throughput of 10 ECN flows vs 10 non-ECN
flows over a CoDel queue using several RTTs (C = 10 Mbps).
Lines intersect the arithmetic mean, dots indicate the median.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 vs 9 3 vs 7 5 vs 5 7 vs 3 9 vs 1

N
or

m
al

iz
ed

 th
ro

ug
hp

ut
 ra

tio

(E
C

N
 fl

ow
s

/ n
oE

C
N

 fl
ow

s)

noECN flows vs # ECN flows

βecn=0.7
βecn=0.75

βecn=0.8
βecn=0.85

βecn=0.9

Fig. 12: Ratio of throughput of 10 ECN flows vs 10 non-ECN
flows over a PIE queue using several RTTs (C = 10 Mbps).
Lines intersect the arithmetic mean, dots indicate the median.

D. Fairness between bulk transfers

Next, we investigated the long-term impact that flows with
a large βecn value can have on traffic that does not support
ECN. To study the worst case, we tested CUBIC flows with
various βecn values in competition with NewReno flows that
do not support ECN. Figs. 11 and 12 show the throughput
ratios for various combinations of 10 flows across a 10 Mbps
bottleneck link using either CoDel or PIE. Throughput was
computed over the after-slow-start period of each flow lasting
approximately 5 minutes. Ratios were normalised by weight-
ing throughput values with the number of flows in each group.
We carried out every test three times, using RTTpath =
{20, 80, 160, 320}ms; even at RTTpath = 320ms the trials
encompassed 133 TCP congestion cycles. The error bars
represent standard deviation over all runs.

The difference between CoDel and PIE is marginal, and
generally a larger βecn value increased the throughput ratio,
as could be expected. Our goal was to assess the potential
“danger” of deploying ABE (i.e., using βecn > β) on the
Internet. On average the increase in the throughput ratio is
limited to a factor of 2.5 for the quite extreme value of
βecn=0.9. For smaller βecn between 0.7 and 0.85 the average
throughput ratio reduces to between 1.25 and 2. In fact, the
averages for βecn = {0.75, 0.8, 0.85} lie within the error bars
of the ratios seen with CUBIC’s default βecn = 0.7, suggesting
ABE (βecn > β) is not much worse than no ABE (βecn = β)
in terms of fairness for βecnup to at least 0.85.

V. RELATED WORK

Since its inception, ECN has attracted much interest in the
research community. One obvious question that papers have
tried to answer was: can we get “more bang for the bits”?
Given that there are two ECN bits in the IP header, they can be
re-defined to distinguish between multiple levels of congestion
[40], [41], or used as defined, but marked with a different rule
that must be known to the end hosts [42], [43]. LT-TCP [44]
proposed using ECN to distinguish between random packet
losses on wireless links and congestion; NF-TCP [45] suggests
using it as a means to detect congestion early and back
off more aggressively than standard TCP, thereby reducing

the delay caused for competing applications. The potential
applications are broad—yet, none of these methods were
designed to interoperate with the currently deployed mix of
standards-compliant ECN-capable and -incapable routers and
end hosts such that it could be gradually introduced in the
Internet.

Congestion Exposure (ConEx) [46], which is based on Re-
ECN [47], uses traffic shapers to hold users accountable for
the congestion they cause on the whole path (as opposed to
giving most capacity to the host running the most aggressive
congestion control). ConEx is gradually deployable, but needs
significant changes to the infrastructure (hosts must be mod-
ified to give information to the network and traffic shapers
must be deployed).

Some schemes were defined for use within a configured
operator domain. In Pre-Congestion Notification (PCN) [48],
the ECN bits are used to inform DiffServ ingress routers of
incipient congestion to better support admission control. Data
Center TCP (DCTCP) [10] also updates TCP’s ECN response
resulting in measurable benefits when network devices update
their ECN marking behaviour. DCTCP requires changing the
receiver to more precisely feed back the number of ECN marks
at a greater precision (i.e., more than one signal per RTT). It
also requires a specific configuration of RED on routers to
operate on the instantaneous queue length, which is currently
only considered safe when all routers on a path use these
updated marking rules. The required device support limits
DCTCP to operate within one data center [49].

A recent proposal called L4S [50] investigates the possi-
bility of gradually introducing a DCTCP-like scheme in the
Internet. That proposal is very close in spirit to our work.
However, just like DCTCP, it requires changing the receiver
which is still ongoing IETF work [51]. Another problem
with DCTCP-like schemes is the inherent unfairness against
standard loss-based TCP traffic, since DCTCP tends to highly
penalise these flows when sharing a common bottleneck. In
order to mitigate this problem recent work proposes a dual
queue AQM mechanism [52], [53] that provides a fair share
of bandwidth between DCTCP and non-ECN flows. However,
this mechanism cannot be deployed quickly as it requires
support from all routers along a path.

ABE’s response to ECN is still based on a reduction each
RTT, rather than per marked segment as for DCTCP. Marking
the instantaneous queue length provides faster feedback, so
DCTCP-like approaches should theoretically perform better
than ABE, if they can be combined with a sender behaviour
that strikes the correct balance between efficiency across up-
dated routers and compatibility across old routers. The major
advantage of ABE is its simplicity. It only requires a single
parameter change at the sender and it is not sensitive to the
marking method (ABE works with network devices configured
for DCTCP as well as other router marking policies). We argue
that taking the shorter deployment path with ABE will give
incentive to wider ECN deployment in the near future.

The idea of using values of β 6= 0.5 is at the basis
of proposals for improving performance of long-lived TCP

flows in high-speed networks. CUBIC is one example of
congestion controllers tailored to high-speed links, but other
similar schemes can be found in the literature. For instance,
H-TCP [54] uses β ∈ (0.5, 0.8), and the value of β is adapted
as a function of measured minimum and maximum RTTs. In a
similar vein, after loss is experienced TCP Westwood [55] sets
cwnd to the product of the estimated available capacity and the
lowest observed RTT—thus, the equivalent β is variable and
dependent on network conditions. High-Speed TCP (HSTCP)
[56] adapts β in the range (0.5, 1), with β taking higher values
for larger cwnd above a threshold. In these proposals, the
rationale for chosing a larger β is to allow for a faster recovery
of cwnd after loss;12 with “standard” congestion control this
can take many RTTs over paths with large BDP.

VI. FUTURE WORK

Our evaluation explored the benefits of ABE with bottle-
necks managed by CoDel or PIE using the recommended
CoDel and PIE AQM parameters. We also used the same βecn
value in both slow start and congestion avoidance. Intuitively,
one may think that using more aggressive AQM parameters
for marking should advocate a higher βecn value. However, we
expect there is a limit to how aggressively an AQM scheme
can react, before even packets in a natural packet burst are
punished by ECN marks or drops. Such questions concerning
AQM tuning should be investigated in future work.

The choice of βecn would depend on the AQM parameters
on the paths as well as on the transport being used. However,
it is within the scope of AQM designers and network operators
(and not the sender’s transport) to configure network devices
on the path appropriately with the parameters that keep the
latency at low level, similar to the default values used by
CoDel and PIE [23]. With regards to choice of transport, since
the sender is aware of the congestion control mechanism it
uses (e.g., CUBIC or NewReno), it can already select the βecn
values recommended in this paper. An analytical justification
for the choice of βecn is left for future work.

For this paper we explored the potential benefits of using a
static βecn (it is a simple change in the sender). Investigating
methods for dynamically adapting βecn according to network
conditions is an interesting area for future work.

ECN-enabled routers need to protect themselves from over-
load by unresponsive traffic. To this end RFC 3168 and
RFC 7567 recommend dropping packets in case of excessive
traffic (e.g., at a queue length above the threshold for CE-
marking). However, a drop threshold set too low can sig-
nificantly harm performance. Improved overload protection
methods (e.g., auto-tuning of drop thresholds) requires future
research.

VII. CONCLUSION

This paper proposes and motivates ABE, which asks that
TCP senders use a higher multiplicative decrease factor βecn >
β when reacting to ECN marks on ECN-enabled connections,

12These mechanisms also adapt the window-increase parameter α to
increase performance.

and use their original β when reacting to a packet loss. We
show that despite low implementation cost, ABE can bring
important performance improvements for TCP flows traversing
bottlenecks that use modern AQM techniques. ABE achieves
this using standard ECN marking as specified in RFC 3168 for
routers/middleboxes and TCP receivers. It also defaults to a
conservative behaviour whenever ECN is not supported along
the path, ensuring ABE is incrementally deployable.

As our results in §IV show, the choice of βecn is important
but not overly critical, in the sense that ABE seems robust and
offers performance improvements across a range of values of
βecn. Setting βecn ∈ [0.7, 0.85] for NewReno (cf. β = 0.5)
and βecn ≈ 0.85 for CUBIC (cf. β = 0.7) seems to provide
reasonable trade-offs between latency, throughput and fairness
across a range of scenarios.

We expect methods like ABE to encourage more use of
ECN, and as use increases, we believe the time will be-
come ripe to revisit proposals for alternative ECN marking,
based on the techniques discussed in §V. When use becomes
widespread, router/middlebox manufacturers will have an in-
centive to implement these improved ECN specifications to
further optimise performance. Hosts using ABE will then also
be able to update their βecn.

The use of ECN must be initiated by the TCP client. This
makes ABE immediately applicable for use cases where a host
updated with ABE initiates a connection and then transmits
data, such as uploads to the Cloud, Web 2.0 applications, etc.
In use cases where a client initiates a connection to retrieve
data from a server, such as web surfing, ABE requires the
server to be updated. An example of the expected performance
at the server side with ECN, but without ABE, is shown
in Fig. 2. Given such results and the increasing ability of
routers to correctly pass ECN-enabled packets, no significant
disadvantage is to be expected in this case, and the impact of
ABE will increase as servers introduce support for it.

In conclusion, experimental results have been presented that
show real benefit from updating TCP’s backoff in response
to ECN marks (βecn), and we assert that this can provide a
significant performance incentive towards greater use of the
ECN across the Internet. ABE is now also being considered
for standardization within the IETF [17], [18].

VIII. ACKNOWLEDGEMENTS

This work was partly funded by the European Community
under its 7th Framework Programme through the Reducing
Internet Transport Latency (RITE) project (ICT-317700). The
views expressed are solely those of the authors.

REFERENCES

[1] B. Briscoe, A. Brunstrom, A. Petlund, D. Hayes, D. Ros, I. J. Tsang,
S. Gjessing, G. Fairhurst, C. Griwodz, and M. Welzl, “Reducing Internet
Latency: A Survey of Techniques and Their Merits,” IEEE Communi-
cations Surveys Tutorials, vol. 18, pp. 2149–2196, 3rd quarter 2016.

[2] J. Gettys and K. Nichols, “Bufferbloat: Dark Buffers in the Internet,”
ACM Queue, vol. 9, pp. 40:40–40:54, Nov 2011.

[3] R. Adams, “Active Queue Management: A Survey,” IEEE Communica-
tions Surveys and Tutorials, vol. 15, pp. 1425–1476, 3rd quarter 2013.

[4] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP.” RFC 3168 (Proposed Standard),
Sep 2001. Updated by RFCs 4301, 6040.

[5] G. Fairhurst and M. Welzl, “The Benefits of Using Explicit Congestion
Notification (ECN).” RFC 8087 (Informational), Mar 2017.

[6] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, pp. 20:20–20:34, May 2012.

[7] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar,
“Controlled Delay Active Queue Management.” Internet Draft,
https://tools.ietf.org/html/draft-ietf-aqm-codel, Mar 2017.

[8] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “PIE: A Lightweight Control Scheme to
Address the Bufferbloat Problem.,” in IEEE HPSR, (Taipei, Taiwan),
Jul 2013.

[9] R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem.” RFC 8033 (Experimental), Feb 2017.

[10] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” in
ACM SIGCOMM, (New Delhi, India), Aug 2010.

[11] D. Bansal and H. Balakrishnan, “Binomial Congestion Control Algo-
rithms,” in IEEE INFOCOM, (Anchorage, AK, USA), Apr 2001.

[12] M. Kwon and S. Fahmy, “TCP Increase/Decrease Behavior with Explicit
Congestion Notification (ECN),” in IEEE ICC, (New York, New York,
USA), May 2002.

[13] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Trans. Netw., vol. 1, pp. 397–413,
Aug 1993.

[14] T. J. Ott, “Transport Protocols in the TCP Paradigm and Their Perfor-
mance,” Telecommun. Syst., vol. 30, pp. 351–385, Dec 2005.

[15] B. Briscoe, “Flow Rate Fairness: Dismantling a Religion,” ACM SIG-
COMM CCR, vol. 37, pp. 63–74, Apr 2007.

[16] N. Khademi, M. Welzl, G. Armitage, C. Kulatunga, D. Ros,
G. Fairhurst, S. Gjessing, and S. Zander, “Alternative Backoff: Achieving
Low Latency and High Throughput with ECN and AQM.” CAIA
Technical Report 150710A, http://caia.swin.edu.au/reports/150710A/
CAIA-TR-150710A.pdf, 10 July 2015.

[17] D. Black, “Explicit Congestion Notification (ECN) Ex-
perimentation.” Internet Draft, https://tools.ietf.org/html/
draft-ietf-tsvwg-ecn-experimentation, Mar 2017.

[18] N. Khademi, M. Welzl, G. Armitage, and G. Fairhurst, “TCP Alternative
Backoff with ECN (ABE).” Internet Draft, https://tools.ietf.org/html/
draft-ietf-tcpm-alternativebackoff-ecn, Feb 2017.

[19] B. Trammell, M. Kühlewind, D. Boppart, I. Learmonth, G. Fairhurst,
and R. Scheffenegger, “Enabling Internet-wide Deployment of Explicit
Congestion Notification,” in PAM, (New York), Mar 2015.

[20] J. Padhye and S. Floyd, “Identifying the TCP Behavior of Web Servers,”
in ACM SIGCOMM, (Stockholm, Sweden), Aug 2000.

[21] A. Medina, M. Allman, and S. Floyd, “Measuring the Evolution of
Transport Protocols in the Internet,” ACM SIGCOMM CCR, vol. 35,
pp. 37–52, Apr 2005.

[22] S. Bauer, R. Beverly, and A. Berger, “Measuring the State of ECN
Readiness in Servers, Clients,and Routers,” in ACM IMC, (Berlin), Nov
2011.

[23] F. Baker and G. Fairhurst, “IETF Recommendations Regarding Active
Queue Management.” RFC 7567 (Best Current Practice), Jul 2015.

[24] V. Jacobson, “Congestion Avoidance and Control,” in Symposium Pro-
ceedings on Communications Architectures and Protocols, SIGCOMM,
(New York, NY, USA), pp. 314–329, ACM, 1988.

[25] N. Khademi, D. Ros, and M. Welzl, “The New AQM Kids on the Block:
Much Ado about Nothing?,” Technical Report 434, University of Oslo,
Dept. of Informatics, Oct 2013.

[26] J. Schwardmann, D. Wagner, and M. Kühlewind, “Evaluation of ARED,
CoDel and PIE,” in EUNICE, (Rennes, France), Sep 2014.

[27] S. Ha and I. Rhee, “Taming the Elephants: New TCP Slow Start,”
Computer Networks, vol. 55, pp. 2092–2110, Jun 2011.

[28] “HTTP Archive.” http://httparchive.org/trends.php.
[29] S. Zander and G. Armitage, “TEACUP v1.0 - A System for

Automated TCP Testbed Experiments.” CAIA Technical Report
150529A, http://caia.swin.edu.au/reports/150529A/CAIA-TR-150529A.
pdf, 29 May 2015.

[30] T. Hoeiland-Joergensen, P. McKenney, D. Täht, J. Gettys,
and E. Dumazet, “FlowQueue-Codel.” Internet Draft,
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel, Mar 2016.

[31] C. Kulatunga, N. Kuhn, G. Fairhurst, and D. Ros, “Tackling Bufferbloat
in Capacity-limited Networks,” in EuCNC, (Paris, France), Jun 2015.

[32] R. Pan, P. Natarajan, F. Baker, G. White, B. VerSteeg, M. S.
Prabhu, C. Piglione, and V. Subramanian, “PIE: A Lightweight Con-
trol Scheme to Address the Bufferbloat Problem.” Internet Draft,
https://tools.ietf.org/html/draft-ietf-aqm-pie-02, Aug 2015.

[33] N. Khademi, “ABE Linux and FreeBSD patches.” http://heim.ifi.uio.no/
naeemk/research/ABE. [Accessed on 27 April 2017].

[34] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,”
in ACM SIGCOMM, (Portland, Oregon, USA), Sep 2004.

[35] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2).” RFC 7540 (Proposed Standard), May 2015.

[36] Y. Elkhatib, G. Tyson, and M. Welzl, “Can SPDY Really Make the Web
Faster?,” in IFIP Networking, (Trondheim, Norway), Jun 2014.

[37] S. Zander and G. Armitage, “Minimally-Intrusive Frequent Round Trip
Time Measurements Using Synthetic Packet-Pairs,” in IEEE LCN 2013,
Oct 2013.

[38] N. Khademi, D. Ros, and M. Welzl, “The New AQM Kids on the Block:
An Experimental Evaluation of CoDel and PIE,” in IEEE INFOCOM
WKSHPS, (Toronto, Ontario, Canada), Apr 2014.

[39] R. Jain, D. Chiu, and W. Hawe, “A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Computer Systems,”
Technical report TR-301, DEC Research, Sep 1984.

[40] A. Durresi, L. Barolli, R. Jain, and M. Takizawa, “Congestion Control
Using Multilevel Explicit Congestion Notification,” Journal of Informa-
tion Processing Society of Japan, vol. 48, pp. 514–526, Feb 2007.

[41] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One More
Bit is Enough,” IEEE/ACM Trans. Netw., vol. 16, pp. 1281–1294, Dec
2008.

[42] N. Vasic, S. Kuntimaddi, and D. Kostic, “One Bit is Enough: A Frame-
work for Deploying Explicit Feedback Congestion Control Protocols,”
in COMSNETS, (Bangalore, India), Jan 2009.

[43] I. A. Qazi, L. L. H. Andrew, and T. Znati, “Congestion Control with
Multipacket Feedback,” IEEE/ACM Trans. Netw., vol. PP, p. 1, Dec
2012.

[44] B. Ganguly, B. Holzbauer, K. Kar, and K. Battle, “Loss-Tolerant
TCP (LT-TCP): Implementation and Experimental Evaluation,” in IEEE
MILCOM, (Orlando, Florida, USA), Oct 2012.

[45] M. Arumaithurai, X. Fu, and K. Ramakrishnan, “NF-TCP: Network
Friendly TCP,” in IEEE LANMAN, (Long Branch, New Jersey, USA),
May 2010.

[46] B. Briscoe, R. Woundy, and A. Cooper, “Congestion Exposure (ConEx)
Concepts and Use Cases.” RFC 6789 (Informational), Dec 2012.

[47] B. Briscoe, A. Jacquet, C. D. Cairano-Gilfedder, A. Salvatori, A. Sop-
pera, and M. Koyabe, “Policing Congestion Response in an Internetwork
Using Re-Feedback,” ACM SIGCOMM CCR, vol. 35, pp. 277–288, Aug
2005.

[48] M. Menth, B. Briscoe, and T. Tsou, “Precongestion Notification: New
QoS Support for Differentiated Services IP Networks,” IEEE Commu-
nications Magazine, vol. 50, no. 3, pp. 94–103, 2012.

[49] S. Bensley, D. Thaler, P. Balasubramanian, L. Eggert, and G. Judd,
“Datacenter TCP (DCTCP): TCP Congestion Control for Datacenters.”
Internet Draft, https://tools.ietf.org/html/draft-ietf-tcpm-dctcp, Mar 2017.

[50] B. Briscoe, K. D. Schepper, and M. B. Braun, “Low Latency, Low Loss,
Scalable Throughput (L4S) Internet Service: Architecture.” Internet
Draft, https://tools.ietf.org/html/draft-briscoe-tsvwg-l4s-arch, Mar 2017.

[51] M. Kuehlewind, R. Scheffenegger, and B. Briscoe, “Problem Statement
and Requirements for Increased Accuracy in Explicit Congestion Noti-
fication (ECN) Feedback.” RFC 7560 (Informational), Aug 2015.

[52] O. Bondarenko, K. De Schepper, I.-J. Tsang, B. Briscoe, A. Petlund, and
C. Griwodz, “Ultra-low Delay for All: Live Experience, Live Analysis,”
in ACM MMSys, (Klagenfurt, Austria), May 2016.

[53] K. De Schepper, B. Briscoe, O. Bondarenko, and I. Tsang, “DualQ
Coupled AQM for Low Latency, Low Loss and Scalable Throughput.”
Internet Draft, https://tools.ietf.org/html/draft-briscoe-tsvwg-aqm-dualq-
coupled, Oct 2016.

[54] D. Leith and R. Shorten, “H-TCP: TCP for High-speed and Long-
distance Networks,” in PFLDnet, (Argonne, Illinois, USA), Feb 2004.

[55] C. Casetti, M. Gerla, S. Mascolo, M. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth Estimation for Enhanced Transport over Wireless
Links,” in ACM MOBICOM, (Rome, Italy), Jul 2001.

[56] S. Floyd, “HighSpeed TCP for Large Congestion Windows.” RFC 3649
(Experimental), Dec 2003.

