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Abstract—Home networks are seeing increased deployment of
Wireless LAN (WiFi) links between conventional, gigabit/second
wired Ethernet segments. This means an increasing number of
internal bottlenecks, even as home networks are also expected
to support latency-sensitive applications, regular TCP flows and
an emerging class of low-priority, time-insensitive ‘background’
TCP flows. This paper explores the novel use of CDG v0.1 (a
delay-gradient TCP) for such background TCP connections in
home networks. We show a CDG flow induces latencies of only
tens of milliseconds regardless of the bottleneck’s internal buffer
size (useful when coexisting with latency-sensitive traffic) while
achieving a significant fraction of spare link capacity. We also
show CDG does not gratuitously steal capacity from commonly
deployed “foreground” TCPs such as CUBIC and NewReno.

I. INTRODUCTION

Home networks are increasingly a mix of conventional
100Mbps and 1Gbps wired Ethernet segments and WiFi wire-
less LAN (WLAN) links. PCs, home file servers, entertainment
consoles and handheld devices are just as likely to be commu-
nicating amongst themselves over the home’s WLAN as they
are communicating to and from “the Internet”. And despite
the increasing diversity of internal bottlenecks, home networks
must support both latency-sensitive applications (such as UDP-
based VoIP and online games) and bulk data transfer applica-
tions (such as TCP-based email, web surfing, peer to peer file
transfers, streaming video, and so forth).

A key challenge is that common loss-based TCP con-
gestion control (CC) algorithms (such as NewReno [1] and
CUBIC [2]) tend to cause cyclical filling and draining of a net-
work bottleneck’s buffers. A side-effect of such CC behaviour
is that all traffic sharing the bottleneck will experience addi-
tional end to end latency due to increased queueing delays [3].
Such delays are problematic for concurrent latency-sensitive
applications, particularly given the past decade’s growth of
available buffer space (bufferbloat) almost everywhere a queue
might form (routers, switches, device drivers, and so forth) [4].
Loss-based TCPs also increase delays over WLAN links by
being insensitive to contention for transmission slots.

There is also an emerging class of applications whose data
transfers can be categorised as low-priority, time-insensitive
background TCP flows (such as automated in-house backup
systems, peer to peer file transfers, cache pre-fetching, off-
peak software updates, and so forth). Such applications require

TCP-style reliable data transfer but tolerate deferring to other
traffic. This has prompted development of “background”,
“scavenger” or “less than best effort” styles of TCP service [5].

This current paper explores the novel use of CDG v0.1 [6] (a
delay-gradient TCP) for background TCP connections in home
networks. We show that in lightly-multiplexed scenarios CDG
adds latencies down in the tens of milliseconds regardless
of the bottleneck’s internal buffer size while achieving a
significant fraction of available link capacity. We further show
CDG does not gratuitously steal capacity from commonly
deployed “foreground” TCPs such as CUBIC and NewReno
in WLAN environments.

The rest of this paper is structured as follows. Section II
provides a brief review of loss-based and delay-based TCPs,
the challenges of WLAN links, and the limitations of existing
approaches to background TCP. CDG itself is summarised
in Section III. Section IV illustrates CDG coexisting with
loss-based TCPs in a WLAN environment. We conclude with
Section V.

II. BACKGROUND

Here we briefly review how loss-based TCP interacts with
latency-sensitive traffic, the challenges of WLAN links, the
ability of delay-based TCPs to minimise queuing delays and
the limitations of existing approaches to background TCP.

A. How regular TCP interacts with latency-sensitive traffic

The capacity probing and congestion control behaviour of
loss-based TCP is problematic when sharing a bottleneck with
latency-sensitive traffic flows [3], [7]). The issue is how loss-
based TCPs fill and drain bottleneck queues.

The number of unacknowledged packets a TCP sender can
have in flight is limited by the smaller of the TCP receiver’s
advertised receive window (rwnd, indicating how much data
the receiver can currently buffer) and the TCP sender’s con-
gestion window (cwnd or w, an estimate of how much data
the network path can absorb) [8]. Loss-based TCPs grow w
when packets are getting through, eventually exceeding the
level required to fully utilise the path. Further w growth simply
fills the bottleneck’s queue, eventually leading to lost packets.
The TCP flow’s w then shrinks, the queue drains (although
not back to empty) and TCP’s probing begins again.
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The increasing availability of buffer space in network de-
vices and end-hosts means TCP receivers are able to advertise
increasingly large rwnd, and TCP senders grow w to fill
the bottleneck’s bigger buffers. The resulting queuing delays
impact on all traffic traversing a bottleneck queue – these
have been observed as high as multiple seconds over consumer
paths [9], [10].

B. 802.11 Wireless LANs (WLANs)

WLAN-connected laptops, smartphones, tablets, games con-
soles, network extenders and so forth are increasingly com-
mon in the modern home, generating a mix of TCP-based
and latency-sensitive traffic flows. Delays over WLAN links
originate both from buffering (within stations) and contention
(between stations competing for radio transmission slots).
Contention levels go up with the number of concurrent hosts,
increasing the latencies experienced by all parties.

When TCP traffic is directed through an access point (AP)
towards WLAN clients, the AP can coordinate downstream
transmission of all TCP Data packets. The upstream (reverse)
direction will be corresponding ACK packets. With n stations
and n < 100 we usually see ≤ 3 stations causing upstream
contention by sending ACKs at the same instant [11], [12].

Concurrent TCP flows in the upstream direction are more
troublesome [10], [13], [14]. Congestion manifests itself as
collisions (contention for upstream transmission slots) as each
station’s TCP grows w independently. This in turn causes
localised queue buildup in each station’s upstream interface. A
full queue at one station provides no feedback to other stations,
who keep contending for transmission slots, leading to higher
latencies than in the downstream case. CC algorithms that
grow w more aggressively than NewReno (such as CUBIC,
which is the default in Linux) compound the problem.

WLANs also continuously adapt their modulation and cod-
ing schemes in response to wireless noise, interference and
contention levels. Examples include schemes such as Sam-
pleRate [15] and Minstrel [16] for rate adaption (RA) [13].
Transient drops in bit-rate also translate to increased trans-
mission delays.

C. Delay-based TCP and reduced queuing delays

Proposals for delay-based congestion indications have been
around since Raj Jain’s CARD (Congestion Avoidance using
Round-trip Delay) in 1989 [17]. By observing trends in
RTT, delay-based TCPs infer the onset of congestion when a
bottleneck queue is beginning to fill rather than after it fills and
loses packets. Since queues need not fill, queuing delays are
kept low regardless of each bottleneck’s available buffering.

Subsequent variations (such as DUAL [18], Vegas [19], Fast
TCP [20], TCP-Africa [21], Compound TCP (CTCP) [22] and
’CAIA HD’ [23]) have emerged since [17], differing in their
delay measurements (RTT, one-way delay, per-packet mea-
surements, etc), how they set thresholds to infer congestion,
and how they adjust w in response to inferred congestion
(proportional, probabilistic, etc).

Unfortunately, delay-threshold variants (CC algorithms that
infer congestion when absolute delay reaches certain thresh-
olds) find meaningful thresholds hard to set if little is known
about a flow’s network path characteristics over time. In
addition, competing delay-threshold flows can suffer relative
unfairness if their inability to accurately estimate a path’s base
(smallest possible) RTT leads to thresholds established on the
basis of different estimates of base RTT [24].

D. Background / Low-priority TCP

Here we briefly look at the techniques and limitations of
existing approaches to “background” TCP approachs.

1) Prior work: An early example is “TCP Nice” [25] which
uses delay-threshold CC behaviour until RTT (τ ) reaches a
pre-configured fraction t of the bottleneck’s inferred queue
size. When a certain number of packets in one RTT are
observed to have τ > t, congestion is assumed and w is
halved. Otherwise, Vegas-style w control is used. Furthermore,
Reno-style w control is used if packet loss is detected.

TCP LP (“Low priority”) [26], [27] aims to utilise excess
bandwidth yet defer quickly to regular TCP flows. Such
flows are detected when TCP LP’s smoothed one-way delay
(OWD) measurement (di) exceeds a pre-configured threshold
di > dmin+δ(dmax−dmin), indicating the onset of bottleneck
congestion caused by other traffic.

ImTCP-bg [28] uses both regular estimates of available
bandwidth along the path and an enhanced RTT-based mech-
anism for congestion indications.

LEDBAT (“Low Extra Delay Background Transport” [29])
aims to use available excess bandwidth while limiting the
increase in induced path delays and yielding quickly in the
presence of competing flows. Its congestion signal relies on
changes in di measurements up to a specified delay threshold.
While applicable to TCP, LEDBAT’s algorithm has also been
built into proprietary UDP-based peer to peer applications.

2) Limitations: To date background TCPs for home net-
works have not exhibited low induced delays when competing
with latency-sensitive flows.

TCP Nice needs regular τmin (smallest RTT) and τmax

(largest RTT) measurements to set t as a fraction of estimated
queue size. Observing meaningful τmax requires one or more
flows to regularly push the bottleneck queue to its limit
(negatively impacting any concurrent latency-sensitive traffic).

TCP LP needs bottleneck queuing delays to exceed a pre-
configured threshold somewhere between recently measured
dmin and dmax values, suggesting the need for regular queue
filling events to establish dmax. ImTCP-bg requires pre-
configured thresholds to determine how τmin and smoothed
mean τ influence w reduction. LEDBAT requires implemen-
tation changes in both sender and receiver, and by default
allows itself to induce up to dmin + 100ms (where dmin is
LEDBAT’s estimate of the unloaded path’s OWD). However,
recent work shows that LEDBAT can become confused about
dmin, and push a path’s OWD much higher than 100ms [30].

Paper will be published at the 38th Annual IEEE Conference on Local Computer Networks (LCN 2013), Sydney, Australia, October 2013



III. CAIA DELAY GRADIENT (CDG) V0.1

Our focus is the novel application of the sender-side CDG
(“CAIA Delay Gradient”) v0.1 TCP [6] for time-insensitive,
background data transfers. CDG is a sender-side algorithm
compatible with all conventional TCP receivers. By using
relative variations in RTT to infer congestion it eliminates
the need to know a path’s minimum, maximum or typical
RTT levels, and eliminates reliance on pre-configured de-
lay thresholds. Consequently CDG also coexists well with
common types of latency-sensitive traffic (such as VoIP or
online games) which do not cyclically push bottlenecks into
congestion and/or packet loss.

Here we summarise key elements from [6].

A. A delay gradient signal

CDG tracks the envelope (τmax and τmin) of enhanced RTT
estimates [31] seen within a measured RTT interval. Taking n
as the nth RTT interval, CDG constructs two gradient signals
gmax,n and gmin,n from successive τmax and τmin:

g{max,min},n = τ{max,min},n − τ{max,min},n−1 (1)

In slow start mode gmin,n and gmax,n are used as-is for a
timely response to rapid w increases. In congestion avoidance
mode CDG uses ḡmin,n and ḡmax,n (gradients smoothed using
an iterative moving average, see Equation 4 in [6]).

B. Delay-gradient control of w

In congestion avoidance mode, CDG increments w by one
MSS once every RTT unless the smoothed RTT gradient
is positive, in which case there is a finite probability CDG
will back off. These delay-gradient back-offs are expressed
succinctly in Equation 2

wn+1 =

{
wnβd X < P [back-off] ∧ ḡn > 0

wn + 1 otherwise
(2)

with w in packets, n the nth RTT interval, and βd the delay-
gradient back-off factor (βd = 0.7 in [6]). X = [0, 1] is a uni-
formly distributed random number, and the X < P [back-off]
term (see Equation 5 in [6]) provides an RTT-independent
probabilistic back-off (a source with a small RTT will have
the same average P [back-off] as a source with a longer RTT).

CDG allows no more than one Equation 2-triggered backoff
every two RTT intervals (as the impact of a backoff wont be
felt in the next RTT interval). If ḡmin or ḡmax are still not
negative after backing off b = 5 times, CDG presumes it is
competing with one or more loss-based flow(s) and suppresses
further delay-gradient back-offs until either b′ = 5 further
delay-gradient congestion indications have occurred or one of
ḡmin or ḡmax have become negative during this period. (This
is termed ineffectual back-off detection in [6].)

Growth of w in slow start mode mimics that of NewReno.
The decision to reduce w and enter congestion avoidance mode
is made per RTT as per Equation 2, or on packet loss as in
NewReno, whichever occurs first.

C. Updating w on packet loss

Packet loss triggers two possible outcomes. If the bottleneck
queue is presumed full (ḡmax recently dropped to zero before
ḡmin) the loss indicates congestion. Otherwise the lost packet
needs retransmission but w is left unchanged.

When loss is congestion related, CDG adjusts w as follows:

wi+1 =

{
max(si, wi)βl Q = full ∧ packet loss
wi otherwise

(3)

where βl = 0.5 (the classic NewReno-like loss-based multi-
plicative decrease factor), and s is [23]’s concept of a shadow
window – a NewReno-like congestion window not subject to
the delay-gradient back-offs being applied to w. This improves
CDG’s coexistence with loss-based flows (which are oblivious
to CDG’s recent delay-gradient back-offs).

IV. CDG IN WIRELESS LAN ENVIRONMENTS

This section uses CDG v0.1 implemented for FreeBSD [32]
to explore scenarios similar to those that may arise in typical
home WLAN-based networks. We look at the willingess of
CDG to coexist with loss-based TCP flows, and the benefit to
loss-sensitive interactive applications of coexisting with CDG
rather than NewReno or CUBIC.1 All CDG parameters are set
as per [6] except where noted below.

A. Methodology

Figure 1 depicts our experimental network on the Emulab
[33] Wireless LAN testbed. We configured two different
WLANs on different channels, with access points (APs) con-
nected via two intermediate routers and a 100 Mbps links. Each
wireless node was an Intel PIII 600 MHz with 512 MB RAM,
an Atheros-based AR5413 802.11 chipset, FreeBSD 9.0 kernel
and standard Atheros driver operating in 2.4 GHz 802.11b/g
mode for indoor activities.

AP #1

Router #1 
(Dummynet)

100Mbps

Router #2

AP #2

20ms

Figure 1: A dumbbell network topology with 802.11 end-nodes

Sending hosts were on one WLAN, receiving hosts on the
other. All trial runs were confirmed to have similar channel
condition patterns by measuring the RSSI of each frame
carrying TCP payload at its respective receiving node.

Dummynet [34] and ipfw on Router #1 emulated a wired
path between the WLANs having 20 ms one-way delay in each
direction (for an RTTbase = 40ms). With more than 20 ms of

1We focus on NewReno and CUBIC as the “background” TCPs from
Section II-D are (aside from LEDBAT in a peer to peer client) rarely seen.
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buffering at 100 Mbps in Router #1 we ensured the WLANs
were the bottlenecks. TCP’s send and receive buffers were set
large enough to ensure w could grow to fill the bottlenecks.
TCP’s Maximum Segment Size (MSS) was 1448 bytes. All
nodes are synchronized in time using ntp.

Each experiment is a 60 sec run of TCP traffic from iperf
repeated 10 times. We captured all traffic using tcpdump on
the outgoing and incoming interfaces of each station, passively
extracted per-packet RTT statistics using the Synthetic Packet
Pairs (SPP) tool [35], and calculated TCP goodput using
tcptrace [36]. Coexistence tests with VoIP used tcpreplay [37]
to inject previously captured VoIP traffic.

B. CDG coexisting with NewReno and CUBIC

Although CDG v0.1 aims for reasonable performance when
CDG flows share bottlenecks with loss-based TCP flows, it
will always defer to them in some greater or lesser degree.

Figures 2 and 3 reflect a series of WLAN to WLAN tests
with four stations, where either two of four (“2/4”) or three
of four (“3/4”) stations are CDG senders and the rest (one of
four, “1/4”, or two of four, “2/4”) use NewReno or CUBIC.

Figure 2 shows the per-station performance achieved when
running CDG with βd = 0.7 (per [6]). Figure 2a shows the
CDG stations deferring to NewReno stations, with the latter
gaining a greater share of the available capacity. Figure 2b
similarly shows the CDG stations obtaining a smaller share of
capacity than the CUBIC stations.
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Figure 2: Per-station goodput, CDG (βd = 0.7) coexisting with
loss-based TCPs – four WLAN stations either side of an AP

The situation is a little more interesting in Figure 3, when
running CDG with a more aggressive delay-gradient backoff
of βd = 0.5. CDG stations defer to NewReno (Figure 3a)
stations even more comprehensively than they did in Figure 2.
However, CUBIC (Figure 3b) fails to make good use of its
opportunities. This isn’t a problem with CDG per se, which
(with βd = 0.5) provides more transmission opportunities
to the CUBIC station(s) than in Figure 2. The issue is

that CUBIC’s own aggressiveness over the wireless link is
detrimental to its own overall performance, particularly when
three stations run CDG and one station runs CUBIC.
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Figure 3: Per-station goodput, CDG (βd = 0.5) coexisting with
loss-based TCPs – four WLAN stations either side of an AP

These distributions of per-station goodputs are a conse-
quence of how CDG responds to contention-based delays
induced by NewReno or CUBIC stations. As the loss-based
TCP flows grow their congestion windows and push harder,
they cause increased contention for wireless transmission slots.
The CDG flows perceive the increased RTT and apply delay-
gradient back-off, allowing the loss-based flows to consume a
larger share of the wireless channel capacity. However, CDG’s
ineffectual back-off detection ensures the loss-based flows do
not completely starve the CDG flows of capacity.

C. Delays induced using CDG, NewReno or CUBIC alone

Latency-sensitive applications will always suffer when shar-
ing a congested bottleneck with loss-based TCP flows, whether
or not CDG flows are also present. So the next meaningful
question is what delays will be imposed on a WLAN network
when the only other active TCP flows are using CDG with
βd = 0.5, NewReno or CUBIC.

Our next experiments took eight WLAN stations associated
with AP#1 and used iperf to send traffic (upload to) or receive
traffic (download from) eight matching wired hosts on the
other side of Router #1. The WLAN would thus be loaded in
the uplink (towards AP#1) or downlink (from AP#1) directions
respectively.

Figure 4a shows the latencies experienced by TCP traffic in
the download scenario. CDG induces a 90th-percentile RTT2

of ~60 ms (only 20 ms over RTTbase) whilst NewReno and
CUBIC induce 90th-percentile RTTs closer to 150 ms.

The upload scenario in Figure 4b reveals a more dramatic
difference. CDG induces a similar 90th-percentile RTT of

2We focus on 90th-percentile RTTs because latency-sensitive applications
are often more impacted by peak RTTs rather than mean or median RTTs
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Figure 4: Distributions of induced RTT when running only
CDG, NewReno or CUBIC (with 40ms base RTT)

~60 ms, but NewReno and CUBIC now induce 90th-percentile
RTTs closer to ~600 ms. Loss-based CC algorithms suffer
much higher RTTs in the upload scenarios because they
increase w without regard for uplink contention delays.

Both figures suggest that latency-sensitive traffic sharing a
WLAN with CDG flows would experience RTTs that are both
low and consistent (not varying much between minimum and
maximum RTT). This is illustrated further in Figure 5 – an
extract of induced RTT versus time showing CDG producing
consistently low RTT samples while NewReno exhibits the
cyclic behaviour common for loss-based CC algorithms.
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Figure 5: CDG induces lower and more consistent queueing
delays over WLAN than NewReno

The distinct difference in RTT distributions is due to CDG
being responsive to the additional delay variations introduced
at the 802.11 MAC layer (such as increased channel access
time and potential collisions). CDG stations adjust their w con-
servatively, reducing collision probabilities at the MAC layer
and leading to lower observed RTTs. In contrast, NewReno
and CUBIC increase w without regard for MAC layer con-
tention delays. The detrimental impact on RTT is particularly
evident in the upload scenario (Figure 4b).

D. Delay when coexisting with non-reactive VoIP traffic

We next evaluate the impact of CDG, NewReno or CUBIC
coexisting with concurrent VoIP-like flows sharing a bottle-
neck WLAN AP. VoIP traffic tends to be latency-sensitive (due

to the nature of the application) yet non-reactive (in that the
packet transmission rate usually depends on the voice codec’s
rate rather than network conditions).

Figure 6 shows the distribution of RTTs experienced by our
VoIP-like traffic in two coexistence scenarios:

1) Both senders and receivers are 802.11 nodes (eight
stations sending to eight stations through the AP)

2) TCP flows are heading uplink from eight WLAN stations
to eight wired destinations

In addition to the TCP flows, each source/destination pair are
configured to transfer a 60 sec bi-directional VoIP-like flow
consisting of UDP packets in 200 byte Ethernet frames with
20 ms inter-arrival times.

Figure 6a reveals that when both ends are 802.11, our
VoIP packets experienced a 90th-percentile RTT of ~80 ms
(40 ms over RTTbase.) when coexisting with CDG flows. This
contrasts with 90th-percentile RTTs of ~200 ms experienced
when coexisting with NewReno or CUBIC flows.

Figure 6b reveals that when the traffic runs from WLAN
to wired hosts, our VoIP packets experienced a 90th-percentile
RTT of ~60 ms when coexisting with CDG flows. This con-
trasts with 90th-percentile RTTs of ~300 ms our VoIP packets
experienced when coexisting with NewReno or CUBIC flows.
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Figure 6: CDF of two-way delay of coexisting VoIP flows

E. Performance when using CDG, NewReno or CUBIC alone

CDG’s consistently low RTTs in Section IV-C are only part
of the story. Figure 7 shows the CDF of per-station goodput
for Section IV-C’s download and upload scenarios.

In the download scenario (Figure 7a) applications would
achieve similar median goodputs using either NewReno, CU-
BIC or CDG (3 Mbps, 2.8 Mbps and 3 Mbps respectively).
However, the interactions between loss-based CC and up-
stream wireless contention creates a very different story in
the upload scenario (Figure 7b) – applications would achieve
median goodputs of 2.9 Mbps, 1 Mbps and 3.2 Mbps per
station using NewReno, CUBIC or CDG respectively.
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Figure 7: Distribution of per-station goodput (per 5 sec inter-
vals) when running only CDG, NewReno or CUBIC

CUBIC’s poor median performance in Figure 7b is due to its
more aggressive w growth behaviour, leading to higher uplink
contention and hence a wide range of goodput during each
trial. Furthermore, we see that both CUBIC and NewReno
flows were often stalling (achieving less than 100Kbps in a 5-
second window) – when one flow stumbles from time to time,
the loss-based growth of the other seven flows briefly starve
the first one of capacity.

In contrast, Figures 7a and 7b suggest background appli-
cations using CDG in either direction will experience more
consistent goodput compared to using NewReno or CUBIC.

F. Short-term RTT variations are modest

The widely spread RTTs for VoIP coexisting with NewReno
or CUBIC in Figure 6 is due to variations over relatively long
(multi-second) time frames. Over very short periods (such as
from one packet to the next) the RTT tends to change in only
small deltas regardless of our choice of CC algorithm.

Let us briefly define ∆RTTperpacket as the difference be-
tween the RTTs experienced by two consecutively transmitted
VoIP packets. Figure 8a reveals that VoIP will see reasonably
low ∆RTTperpacket regardless of CC algorithm when we
have 802.11 at both ends of the path. However, if the 802.11
stations are sending to wired hosts instead, Figure 8b shows
that VoIP will experience less ∆RTTperpacket when coexisting
with CDG flows. Latency-sensitive applications may cope
acceptably if their play out buffers adapt to long-term changes
in RTT while absorbing short-term RTT variations.

G. Independence from bottleneck bufferbloat

We ran a simple experiment using wired hosts either side of
a bottleneck node to illustrate CDG keeping buffer utilisation
low regardless of a bottleneck’s available buffer space. Dum-
mynet provided a 10Mbps bottleneck with 40ms base RTT
and buffer sizes of {84,167,250,416,582,831} packets.
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Figure 8: CDF of ∆RTTperpacket of coexisting VoIP flows
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Figure 9: Induced RTT vs bottleneck buffer size

Figure 9 shows the median RTT induced by independent
flows of CDG, NewReno and CUBIC versus the bottleneck
buffer size. It is clear that latency-sensitive traffic in a mixed
wired/wireless home network will not experience large RTT
swings if CDG is used for ’background’ TCP, regardless of
the mix of consumer devices in the network and the varied
levels of bufferbloat that may exist.

V. CONCLUSIONS AND FUTURE WORK

Home networks often mix conventional 100Mbps/1Gbps
wired Ethernet segments and lower-speed WLAN links. Loss-
based TCP algorithms cause cyclical filling and draining of a
network bottleneck’s buffers, and are insensitive to contention
for transmission slots on wireless segments. This can cause
significant increase in network delays experienced by all traffic
sharing a bottleneck WLAN link within the home.

Using a FreeBSD-based test bed we have demonstrated that
CDG v0.1 [6] is a viable choice for applications whose data
transfers can be categorised as low-priority, time-insensitive
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background TCP flows. CDG TCP avoids the significant
induced queuing delays common to NewReno, CUBIC (and
intrinsic to proposed “scavenger” or “less than best effort”
styles of TCP such as TCP Nice, TCP LP, or LEDBAT).

In lightly-multiplexed WLAN scenarios we show CDG
consistently adding no more than 20 ms to 40 ms to the 90th-
percentile RTT under circumstances where NewReno and CU-
BIC would add between 110 ms and 560 ms, while achieving a
significant fraction of spare link capacity. CDG does not gratu-
itously steal capacity from commonly deployed “foreground”
TCPs such as CUBIC and NewReno, although these TCPs
may not themselves work well in WLAN environments.

One area of future work is tuning CDG’s transitions between
delay-gradient and loss-based backoffs to better utilise shared
WLAN uplinks, particularly when loss-based TCPs inhabit the
same WLAN client.
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